ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.63
  3. No.3

SPGC: Integration of Secure Multiparty Computation and Differential Privacy for Gradient Computation on Collaborative Learning

https://ipsj.ixsq.nii.ac.jp/records/217588
https://ipsj.ixsq.nii.ac.jp/records/217588
f8871572-1f2b-4e9f-9aea-80928dddc25b
名前 / ファイル ライセンス アクション
IPSJ-JNL6303015.pdf IPSJ-JNL6303015.pdf (2.7 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2022-03-15
タイトル
タイトル SPGC: Integration of Secure Multiparty Computation and Differential Privacy for Gradient Computation on Collaborative Learning
タイトル
言語 en
タイトル SPGC: Integration of Secure Multiparty Computation and Differential Privacy for Gradient Computation on Collaborative Learning
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:若手研究者] collaborative learning, privacy-preserving machine learning, secure multiparty computation, differential privacy
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者名 Kazuki, Iwahana

× Kazuki, Iwahana

Kazuki, Iwahana

Search repository
Naoto, Yanai

× Naoto, Yanai

Naoto, Yanai

Search repository
Jason, Paul Cruz

× Jason, Paul Cruz

Jason, Paul Cruz

Search repository
Toru, Fujiwara

× Toru, Fujiwara

Toru, Fujiwara

Search repository
著者名(英) Kazuki, Iwahana

× Kazuki, Iwahana

en Kazuki, Iwahana

Search repository
Naoto, Yanai

× Naoto, Yanai

en Naoto, Yanai

Search repository
Jason, Paul Cruz

× Jason, Paul Cruz

en Jason, Paul Cruz

Search repository
Toru, Fujiwara

× Toru, Fujiwara

en Toru, Fujiwara

Search repository
論文抄録
内容記述タイプ Other
内容記述 Achieving differential privacy and utilizing secure multiparty computation are the two primary approaches used for ensuring privacy in privacy-preserving machine learning. However, the privacy guarantee by existing integration protocols of both approaches for collaborative learning weakens when more participants join the protocols. In this work, we present Secure and Private Gradient Computation (SPGC), a novel collaborative learning framework with a strong privacy guarantee independent of the number of participants while still providing high accuracy. The main idea of SPGC is to create noise for the differential privacy within secure multiparty computation. We also created an implementation of SPGC and used it in experiments to measure its accuracy and training time. The results show that SPGC is more accurate than a naive protocol based on local differential privacy by up to 5.6%. We experimentally show that the training time increases in proportion to the noise generation and then demonstrate that the privacy guarantee is independent of the number of participants as well as the accuracy evaluation.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.30(2022) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.30.209
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Achieving differential privacy and utilizing secure multiparty computation are the two primary approaches used for ensuring privacy in privacy-preserving machine learning. However, the privacy guarantee by existing integration protocols of both approaches for collaborative learning weakens when more participants join the protocols. In this work, we present Secure and Private Gradient Computation (SPGC), a novel collaborative learning framework with a strong privacy guarantee independent of the number of participants while still providing high accuracy. The main idea of SPGC is to create noise for the differential privacy within secure multiparty computation. We also created an implementation of SPGC and used it in experiments to measure its accuracy and training time. The results show that SPGC is more accurate than a naive protocol based on local differential privacy by up to 5.6%. We experimentally show that the training time increases in proportion to the noise generation and then demonstrate that the privacy guarantee is independent of the number of participants as well as the accuracy evaluation.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.30(2022) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.30.209
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 63, 号 3, 発行日 2022-03-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:26:57.766409
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3