ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. アルゴリズム(AL)
  3. 2022
  4. 2022-AL-187

Finding shortest non-separating and non-disconnecting paths

https://ipsj.ixsq.nii.ac.jp/records/217353
https://ipsj.ixsq.nii.ac.jp/records/217353
8bb049f9-caaa-48c2-82cf-b5de2debda3c
名前 / ファイル ライセンス アクション
IPSJ-AL22187005.pdf IPSJ-AL22187005.pdf (655.2 kB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2022-03-07
タイトル
タイトル Finding shortest non-separating and non-disconnecting paths
タイトル
言語 en
タイトル Finding shortest non-separating and non-disconnecting paths
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Kyoto University
著者所属
Kyoto University
著者所属
Nagoya University
著者所属(英)
en
Kyoto University
著者所属(英)
en
Kyoto University
著者所属(英)
en
Nagoya University
著者名 Yasuaki, Kobayashi

× Yasuaki, Kobayashi

Yasuaki, Kobayashi

Search repository
Shunsuke, Nagano

× Shunsuke, Nagano

Shunsuke, Nagano

Search repository
Yota, Otachi

× Yota, Otachi

Yota, Otachi

Search repository
著者名(英) Yasuaki, Kobayashi

× Yasuaki, Kobayashi

en Yasuaki, Kobayashi

Search repository
Shunsuke, Nagano

× Shunsuke, Nagano

en Shunsuke, Nagano

Search repository
Yota, Otachi

× Yota, Otachi

en Yota, Otachi

Search repository
論文抄録
内容記述タイプ Other
内容記述 For a connected graph G = (V, E) and s, t ∈ V, a non-separating s-t path is a path P between s and t such that the set of vertices of P does not separate G, that is, G - V (P) is connected. An s-t path is non-disconnected if G - E(P) is connected. The problems of finding shortest non-separating and non-disconnecting paths are both known to be NP-hard. In this paper, we consider the problems from the viewpoint of parameterized complexity. We show that the problem of finding a non-separating s-t path of length at most k is W[1]-hard parameterized by k, while the non-disconnecting counterpart is fixed-parameter tractable parameterized by k. We also consider the shortest non-separating path problem on several classes of graphs and show that this problem is NP-hard even on bipartite graphs, chordal graphs, and planar graphs. As for positive results, the shortest non-separating path problem is fixed-parameter tractable parameterized by k on planar graphs and polynomial-time solvable on chordal graphs if k is the shortest path distance between s and t.
論文抄録(英)
内容記述タイプ Other
内容記述 For a connected graph G = (V, E) and s, t ∈ V, a non-separating s-t path is a path P between s and t such that the set of vertices of P does not separate G, that is, G - V (P) is connected. An s-t path is non-disconnected if G - E(P) is connected. The problems of finding shortest non-separating and non-disconnecting paths are both known to be NP-hard. In this paper, we consider the problems from the viewpoint of parameterized complexity. We show that the problem of finding a non-separating s-t path of length at most k is W[1]-hard parameterized by k, while the non-disconnecting counterpart is fixed-parameter tractable parameterized by k. We also consider the shortest non-separating path problem on several classes of graphs and show that this problem is NP-hard even on bipartite graphs, chordal graphs, and planar graphs. As for positive results, the shortest non-separating path problem is fixed-parameter tractable parameterized by k on planar graphs and polynomial-time solvable on chordal graphs if k is the shortest path distance between s and t.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN1009593X
書誌情報 研究報告アルゴリズム(AL)

巻 2022-AL-187, 号 5, p. 1-5, 発行日 2022-03-07
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8566
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:31:46.890540
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3