ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. インターネットと運用技術(IOT)
  3. 2022
  4. 2022-IOT-056

Time-Aware Machine Learning-based Traffic QoS Classification

https://ipsj.ixsq.nii.ac.jp/records/216757
https://ipsj.ixsq.nii.ac.jp/records/216757
c817a375-9c6d-48af-b0e6-0a5e40ab850f
名前 / ファイル ライセンス アクション
IPSJ-IOT22056001.pdf IPSJ-IOT22056001.pdf (1.1 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2022-02-28
タイトル
タイトル Time-Aware Machine Learning-based Traffic QoS Classification
タイトル
言語 en
タイトル Time-Aware Machine Learning-based Traffic QoS Classification
言語
言語 eng
キーワード
主題Scheme Other
主題 IOT
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
University of Tsukuba
著者所属
University of Tsukuba
著者所属
University of Tsukuba
著者所属(英)
en
University of Tsukuba
著者所属(英)
en
University of Tsukuba
著者所属(英)
en
University of Tsukuba
著者名 Weichang, Zheng

× Weichang, Zheng

Weichang, Zheng

Search repository
Ziyu, Guo

× Ziyu, Guo

Ziyu, Guo

Search repository
Yongbing, Zhang

× Yongbing, Zhang

Yongbing, Zhang

Search repository
著者名(英) Weichang, Zheng

× Weichang, Zheng

en Weichang, Zheng

Search repository
Ziyu, Guo

× Ziyu, Guo

en Ziyu, Guo

Search repository
Yongbing, Zhang

× Yongbing, Zhang

en Yongbing, Zhang

Search repository
論文抄録
内容記述タイプ Other
内容記述 With the rapid development and popularization of the Internet and communication technologies, the amount of network traffics has grown explosively. Network resources should be allocated to the applications depending on their requirements for quality of service (QoS). However, fast-growing new applications and protocols bring us difficulties and challenges to classify various traffics correctly. Machine learning-based techniques are expected to be a more time-saving and precise method for traffic classification depending on the quality of services of various applications. In this paper, we focus on the traffic QoS classification based on the deep learning technique with traditional traffic features along with a newly defined feature in this paper, that is, the time period of network traffic. Experimental results show that by considering the time period feature, the classification accuracy can be improved much better than before.
論文抄録(英)
内容記述タイプ Other
内容記述 With the rapid development and popularization of the Internet and communication technologies, the amount of network traffics has grown explosively. Network resources should be allocated to the applications depending on their requirements for quality of service (QoS). However, fast-growing new applications and protocols bring us difficulties and challenges to classify various traffics correctly. Machine learning-based techniques are expected to be a more time-saving and precise method for traffic classification depending on the quality of services of various applications. In this paper, we focus on the traffic QoS classification based on the deep learning technique with traditional traffic features along with a newly defined feature in this paper, that is, the time period of network traffic. Experimental results show that by considering the time period feature, the classification accuracy can be improved much better than before.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12326962
書誌情報 研究報告インターネットと運用技術(IOT)

巻 2022-IOT-56, 号 1, p. 1-7, 発行日 2022-02-28
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8787
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:44:44.335444
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3