Item type |
SIG Technical Reports(1) |
公開日 |
2022-02-28 |
タイトル |
|
|
タイトル |
表層情報を用いたマルウェア検知精度を維持する機械学習モデル更新手法の検討 |
タイトル |
|
|
言語 |
en |
|
タイトル |
Feasibility study of Updating Machine Learning Models to Maintain Malware Detection Accuracy Using Surface Information |
言語 |
|
|
言語 |
jpn |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
ICSS |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
東京電機大学 |
著者所属 |
|
|
|
東京電機大学 |
著者所属 |
|
|
|
東京電機大学 |
著者所属(英) |
|
|
|
en |
|
|
Tokyo Denki University |
著者所属(英) |
|
|
|
en |
|
|
Tokyo Denki University |
著者所属(英) |
|
|
|
en |
|
|
Tokyo Denki University |
著者名 |
栗原, 史弥
松木, 隆宏
寺田, 真敏
|
著者名(英) |
Fumiya, Kurihara
Takahiro, Matsuki
Masato, Terada
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
機械学習モデルを利用したマルウェア検知手法では,コンセプトドリフトと呼ばれる,機械学習モデルをトレーニングした時と予測する時のデータのずれが発生した場合に精度が落ちてしまうことが知られている.精度維持のため,ずれの発生したデータにラベルを付与し,再学習するというアプローチもあるが,学習データの作成に多大なコストがかかってしまうという課題がある.本稿では,この課題を解決するために,Fuzzy Hash 値を用いた機械学習モデル更新手法を提案する.提案方式は,マルウェア検知で高い精度を示した表層情報を利用することで,コストを抑えた機械学習モデル更新を実現すると共に,FFRI Dataset を用いた検証を通してその有効性を示す. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AA12628305 |
書誌情報 |
研究報告セキュリティ心理学とトラスト(SPT)
巻 2022-SPT-46,
号 36,
p. 1-7,
発行日 2022-02-28
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8671 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |