ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. オーディオビジュアル複合情報処理(AVM)
  3. 2022
  4. 2022-AVM-116

Moving Closer to Real-world Reinforcement Learning

https://ipsj.ixsq.nii.ac.jp/records/216508
https://ipsj.ixsq.nii.ac.jp/records/216508
a0256cf1-29c3-4d3d-960d-55068c2dcaab
名前 / ファイル ライセンス アクション
IPSJ-AVM22116009.pdf IPSJ-AVM22116009.pdf (562.6 kB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2022-02-18
タイトル
タイトル Moving Closer to Real-world Reinforcement Learning
タイトル
言語 en
タイトル Moving Closer to Real-world Reinforcement Learning
言語
言語 eng
キーワード
主題Scheme Other
主題 招待講演
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Google Brain
著者所属(英)
en
Google Brain
著者名 Yunjin, Tang

× Yunjin, Tang

Yunjin, Tang

Search repository
著者名(英) Yunjin, Tang

× Yunjin, Tang

en Yunjin, Tang

Search repository
論文抄録
内容記述タイプ Other
内容記述 From super-human performance in games to ultra-efficient automatic chip layout design, we have witnessed the rise of deep reinforcement learning (RL) and its transition from proof-of-concept tasks to beneficial real world applications. In this presentation, I will show some research topics that are critical for us to further advance toward more and more real-world RL applications. The topics to be covered include model-based RL, which aims to address the data inefficiency and environmental uncertainty problems commonly encountered in deep RL, and offline RL techniques wherein we could only rely on the available dataset to learn policies when data collection is expensive. To shed light on interpreting agent behaviors, I will introduce works that combine attention with RL. Finally, manually designing tasks and tuning rewards to training policies can be exhausting, I will cover some works that focus on open-endedness RL that may train the desired policies and at the same time relieve us from the laborious task design.
論文抄録(英)
内容記述タイプ Other
内容記述 From super-human performance in games to ultra-efficient automatic chip layout design, we have witnessed the rise of deep reinforcement learning (RL) and its transition from proof-of-concept tasks to beneficial real world applications. In this presentation, I will show some research topics that are critical for us to further advance toward more and more real-world RL applications. The topics to be covered include model-based RL, which aims to address the data inefficiency and environmental uncertainty problems commonly encountered in deep RL, and offline RL techniques wherein we could only rely on the available dataset to learn policies when data collection is expensive. To shed light on interpreting agent behaviors, I will introduce works that combine attention with RL. Finally, manually designing tasks and tuning rewards to training policies can be exhausting, I will cover some works that focus on open-endedness RL that may train the desired policies and at the same time relieve us from the laborious task design.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10438399
書誌情報 研究報告オーディオビジュアル複合情報処理(AVM)

巻 2022-AVM-116, 号 9, p. 1-1, 発行日 2022-02-18
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8582
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:49:56.214847
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3