ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. 数理モデル化と応用(TOM)
  3. Vol.15
  4. No.1

Accelerating the Numerical Computation of Positive Roots of Polynomials Using Suitable Combination of Lower Bounds

https://ipsj.ixsq.nii.ac.jp/records/216298
https://ipsj.ixsq.nii.ac.jp/records/216298
5710e349-5ec2-4592-abb5-a442b979b62b
名前 / ファイル ライセンス アクション
IPSJ-TOM1501004.pdf IPSJ-TOM1501004.pdf (767.4 kB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type Trans(1)
公開日 2022-01-31
タイトル
タイトル Accelerating the Numerical Computation of Positive Roots of Polynomials Using Suitable Combination of Lower Bounds
タイトル
言語 en
タイトル Accelerating the Numerical Computation of Positive Roots of Polynomials Using Suitable Combination of Lower Bounds
言語
言語 eng
キーワード
主題Scheme Other
主題 [オリジナル論文] continued fraction method, Vincent's theorem, local-max bound, first-λ bound
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Nara Women's University
著者所属
Kyoto University
著者所属
Kyoto University
著者所属
Yahoo Japan Corporation
著者所属
University of Fukui
著者所属
Osaka Seikei University
著者所属(英)
en
Nara Women's University
著者所属(英)
en
Kyoto University
著者所属(英)
en
Kyoto University
著者所属(英)
en
Yahoo Japan Corporation
著者所属(英)
en
University of Fukui
著者所属(英)
en
Osaka Seikei University
著者名 Masami, Takata

× Masami, Takata

Masami, Takata

Search repository
Takuto, Akiyama

× Takuto, Akiyama

Takuto, Akiyama

Search repository
Sho, Araki

× Sho, Araki

Sho, Araki

Search repository
Hiroyuki, Ishigami

× Hiroyuki, Ishigami

Hiroyuki, Ishigami

Search repository
Kinji, Kimura

× Kinji, Kimura

Kinji, Kimura

Search repository
Yoshimasa, Nakamura

× Yoshimasa, Nakamura

Yoshimasa, Nakamura

Search repository
著者名(英) Masami, Takata

× Masami, Takata

en Masami, Takata

Search repository
Takuto, Akiyama

× Takuto, Akiyama

en Takuto, Akiyama

Search repository
Sho, Araki

× Sho, Araki

en Sho, Araki

Search repository
Hiroyuki, Ishigami

× Hiroyuki, Ishigami

en Hiroyuki, Ishigami

Search repository
Kinji, Kimura

× Kinji, Kimura

en Kinji, Kimura

Search repository
Yoshimasa, Nakamura

× Yoshimasa, Nakamura

en Yoshimasa, Nakamura

Search repository
論文抄録
内容記述タイプ Other
内容記述 The continued fraction method for isolating the positive roots of a univariate polynomial equation is based on Vincent's theorem, which computes all of the real roots of polynomial equations. In this paper, we propose suitable combination of lower bounds which accelerate the fraction method. The two proposed bounds are derived from a theorem stated by Akritas et al., and use different pairing strategies for the coefficients of the target polynomial equations from the bounds proposed by Akritas et al. Moreover, we compute another bound. First, we compute a candidate for the lower bound generated by Newton's method. Second, by using Laguerre's theorem, we check whether the candidate for the lower bound is appropriate. Numerical experiments show that the three lower bounds are more effective than existing bounds for some special polynomial equations and random polynomial equations, and are competitive with them for other special polynomial equations. Additionally, we determine a suitable combination of those lower bounds.
論文抄録(英)
内容記述タイプ Other
内容記述 The continued fraction method for isolating the positive roots of a univariate polynomial equation is based on Vincent's theorem, which computes all of the real roots of polynomial equations. In this paper, we propose suitable combination of lower bounds which accelerate the fraction method. The two proposed bounds are derived from a theorem stated by Akritas et al., and use different pairing strategies for the coefficients of the target polynomial equations from the bounds proposed by Akritas et al. Moreover, we compute another bound. First, we compute a candidate for the lower bound generated by Newton's method. Second, by using Laguerre's theorem, we check whether the candidate for the lower bound is appropriate. Numerical experiments show that the three lower bounds are more effective than existing bounds for some special polynomial equations and random polynomial equations, and are competitive with them for other special polynomial equations. Additionally, we determine a suitable combination of those lower bounds.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11464803
書誌情報 情報処理学会論文誌数理モデル化と応用(TOM)

巻 15, 号 1, p. 18-30, 発行日 2022-01-31
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7780
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:52:20.526384
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3