ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. Asia Pacific Conference on Robot IoT System Development and Platform (APRIS)
  4. 2021

Edge Domain Adaptation through Stepwise Cross-Domain Distillation

https://ipsj.ixsq.nii.ac.jp/records/216177
https://ipsj.ixsq.nii.ac.jp/records/216177
52d48665-0139-4bdf-9cfd-9a4d1b524c4a
名前 / ファイル ライセンス アクション
IPSJ-APRIS2021001.pdf IPSJ-APRIS2021001.pdf (2.3 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type Symposium(1)
公開日 2022-01-28
タイトル
タイトル Edge Domain Adaptation through Stepwise Cross-Domain Distillation
タイトル
言語 en
タイトル Edge Domain Adaptation through Stepwise Cross-Domain Distillation
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Tokyo Institute of Technology
著者所属
Tokyo Institute of Technology
著者所属(英)
en
Tokyo Institute of Technology
著者所属(英)
en
Tokyo Institute of Technology
著者名 Taisei, Yamana

× Taisei, Yamana

Taisei, Yamana

Search repository
Yuko, Hara-Azumi

× Yuko, Hara-Azumi

Yuko, Hara-Azumi

Search repository
著者名(英) Taisei, Yamana

× Taisei, Yamana

en Taisei, Yamana

Search repository
Yuko, Hara-Azumi

× Yuko, Hara-Azumi

en Yuko, Hara-Azumi

Search repository
論文抄録
内容記述タイプ Other
内容記述 Machine learning is now required to be built on embedded systems to realize edge-AI devices, where not only weight reduction but also accuracy degradation that stems from domain shift need to be addressed. This paper proposes Stepwise Cross-Domain Distillation (SCDD) that employs unsupervised domain adaptation for lightweight models. By distilling knowledge from a pre-domain-adapted large model stepwisely through a teaching assistant model, the final lightweight student model can effectively achieve good accuracy in a target domain. We also provide insights obtained through quantitative evaluations to improve stepwise knowledge distillation in various domain shifts.Code is available at https://github.com/TaiseiYamana/SCDD.git
論文抄録(英)
内容記述タイプ Other
内容記述 Machine learning is now required to be built on embedded systems to realize edge-AI devices, where not only weight reduction but also accuracy degradation that stems from domain shift need to be addressed. This paper proposes Stepwise Cross-Domain Distillation (SCDD) that employs unsupervised domain adaptation for lightweight models. By distilling knowledge from a pre-domain-adapted large model stepwisely through a teaching assistant model, the final lightweight student model can effectively achieve good accuracy in a target domain. We also provide insights obtained through quantitative evaluations to improve stepwise knowledge distillation in various domain shifts.Code is available at https://github.com/TaiseiYamana/SCDD.git
書誌情報 Proceedings of Asia Pacific Conference on Robot IoT System Development and Platform

巻 2021, p. 1-7, 発行日 2022-01-28
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:54:05.740692
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3