ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 全国大会
  2. 83回
  3. 人工知能と認知科学

フィーチャに基づく深層学習モデル設計方法の提案と評価

https://ipsj.ixsq.nii.ac.jp/records/215022
https://ipsj.ixsq.nii.ac.jp/records/215022
1ff52a5b-6621-47f4-9a1a-0283462f4d85
名前 / ファイル ライセンス アクション
IPSJ-Z83-1R-03.pdf IPSJ-Z83-1R-03.pdf (780.5 kB)
Copyright (c) 2021 by the Information Processing Society of Japan
Item type National Convention(1)
公開日 2021-03-04
タイトル
タイトル フィーチャに基づく深層学習モデル設計方法の提案と評価
言語
言語 jpn
キーワード
主題Scheme Other
主題 人工知能と認知科学
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
南山大
著者所属
南山大
著者名 太田, 龍之介

× 太田, 龍之介

太田, 龍之介

Search repository
青山, 幹雄

× 青山, 幹雄

青山, 幹雄

Search repository
論文抄録
内容記述タイプ Other
内容記述 従来の深層学習モデル開発では要求を満たすモデルの生成には,しばしば開発者の試行錯誤が必要とされる.このような発見的開発方法では,要求を満たす精度の学習モデルを効率的,かつ,安定して開発することは困難である.本稿では,データのフィーチャ(特徴量)に着目し,段階的に学習可能な学習モデル設計方法を提案する.提案方法では学習データの本質を表現するフィーチャをコントロールしながら段階的に学習を行うことで,学習のコントロールを実現する.これにより,機械学習ソフトウェア開発者が要求を満たす学習モデルの安定した開発を可能とする.提案方法をCifar10データセットに適用し, 有効性と妥当性を示す.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00349328
書誌情報 第83回全国大会講演論文集

巻 2021, 号 1, p. 445-446, 発行日 2021-03-04
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 16:21:26.103623
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3