WEKO3
アイテム
音声中の音声検索語検出における平均事後確率ベクトル圧縮方式の検索精度改良
https://ipsj.ixsq.nii.ac.jp/records/214912
https://ipsj.ixsq.nii.ac.jp/records/214912f6c5ab71-5c2f-4eec-8be5-7d9a2def128c
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2021 by the Information Processing Society of Japan
|
Item type | National Convention(1) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2021-03-04 | |||||||||||||||
タイトル | ||||||||||||||||
タイトル | 音声中の音声検索語検出における平均事後確率ベクトル圧縮方式の検索精度改良 | |||||||||||||||
言語 | ||||||||||||||||
言語 | jpn | |||||||||||||||
キーワード | ||||||||||||||||
主題Scheme | Other | |||||||||||||||
主題 | 人工知能と認知科学 | |||||||||||||||
資源タイプ | ||||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_5794 | |||||||||||||||
資源タイプ | conference paper | |||||||||||||||
著者所属 | ||||||||||||||||
岩手県大 | ||||||||||||||||
著者所属 | ||||||||||||||||
岩手県大 | ||||||||||||||||
著者所属 | ||||||||||||||||
岩手県大 | ||||||||||||||||
著者所属 | ||||||||||||||||
産総研 | ||||||||||||||||
著者所属 | ||||||||||||||||
岩手県大 | ||||||||||||||||
著者名 |
横田, 平志
× 横田, 平志
× 小嶋, 和徳
× 眞田, 尚久
× 李, 時旭
× 伊藤, 慶明
|
|||||||||||||||
論文抄録 | ||||||||||||||||
内容記述タイプ | Other | |||||||||||||||
内容記述 | 音声中の検索語検出において,DNNから算出した音声データの全事後確率ベクトル(Posteriorgram)を状態ごとの平均事後確率ベクトル(APPV)に圧縮することで,検索時のメモリ使用量の削減を行う方式を提案した.この方式では,音声データのPosteriorgramを求め,各フレームの事後確率ベクトルの要素の中で最も事後確率が高い要素(状態)を最尤状態とし、そのフレームにその状態番号を対応させる.同じ最尤状態を持つフレームの事後確率ベクトルをAPPVしている.最尤状態は学習モデルに依存するため,誤っていることも考えられる.本稿では,複数の学習モデルから求めた最尤状態を用いたAPPVの改良方式を提案する. | |||||||||||||||
書誌レコードID | ||||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||||
収録物識別子 | AN00349328 | |||||||||||||||
書誌情報 |
第83回全国大会講演論文集 巻 2021, 号 1, p. 217-218, 発行日 2021-03-04 |
|||||||||||||||
出版者 | ||||||||||||||||
言語 | ja | |||||||||||||||
出版者 | 情報処理学会 |