ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. プログラミング(PRO)
  3. Vol.15
  4. No.1

Design and Implementation of a Multicomplex Number Library for Computing any Order of Derivatives

https://ipsj.ixsq.nii.ac.jp/records/214576
https://ipsj.ixsq.nii.ac.jp/records/214576
2bcd2fa1-ac94-4f30-b375-48120a5dc24a
名前 / ファイル ライセンス アクション
IPSJ-TPRO1501011.pdf IPSJ-TPRO1501011.pdf (29.6 kB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type Trans(1)
公開日 2022-01-05
タイトル
タイトル Design and Implementation of a Multicomplex Number Library for Computing any Order of Derivatives
タイトル
言語 en
タイトル Design and Implementation of a Multicomplex Number Library for Computing any Order of Derivatives
言語
言語 eng
キーワード
主題Scheme Other
主題 [発表概要, Unrefereed Presentatin Abstract]
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Graduate School of Engineering, The University of Tokyo
著者所属
Information Technology Center, The University of Tokyo
著者所属(英)
en
Graduate School of Engineering, The University of Tokyo
著者所属(英)
en
Information Technology Center, The University of Tokyo
著者名 Shaowen, Li

× Shaowen, Li

Shaowen, Li

Search repository
Hiroyuki, Sato

× Hiroyuki, Sato

Hiroyuki, Sato

Search repository
著者名(英) Shaowen, Li

× Shaowen, Li

en Shaowen, Li

Search repository
Hiroyuki, Sato

× Hiroyuki, Sato

en Hiroyuki, Sato

Search repository
論文抄録
内容記述タイプ Other
内容記述 Derivatives are the central pillar for solving many computational problems including the training of neural networks, the development of artificial intelligence tools, and physical simulations. Various methods for computing derivatives exist, and they can be classified into four categories: (1) manual derivation; (2) numerical differentiation; (3) symbolic differentiation; and (4) automatic differentiation. Using complex numbers for computing derivatives can be considered as a numerical method, and it avoids the cancellation error inherent to the finite difference method. It possesses advantages from numerical differentiation including better efficiency and easy implementation. Implemented properly, it also achieves comparable accuracy with symbolic and automatic differentiation. Generalizing complex number to higher dimensions further enables us to calculate derivatives of any order, which is hard to obtain using other approaches. In this work, the knowledge of multicomplex algebra is first described and a C++ multicomplex class is constructed. The efficiency and accuracy of potential implementations are compared. Furthermore, a source code transformer that automatically embeds the multicomplex data type into the original program is implemented. The transformer augments this approach with the advantage that programmers can focus solely on building the computation and only a minimum code rewriting is needed. We evaluate the performance and productivity of our library and the transformer in two applications: poisoning attack and mass-spring simulation.
論文抄録(英)
内容記述タイプ Other
内容記述 Derivatives are the central pillar for solving many computational problems including the training of neural networks, the development of artificial intelligence tools, and physical simulations. Various methods for computing derivatives exist, and they can be classified into four categories: (1) manual derivation; (2) numerical differentiation; (3) symbolic differentiation; and (4) automatic differentiation. Using complex numbers for computing derivatives can be considered as a numerical method, and it avoids the cancellation error inherent to the finite difference method. It possesses advantages from numerical differentiation including better efficiency and easy implementation. Implemented properly, it also achieves comparable accuracy with symbolic and automatic differentiation. Generalizing complex number to higher dimensions further enables us to calculate derivatives of any order, which is hard to obtain using other approaches. In this work, the knowledge of multicomplex algebra is first described and a C++ multicomplex class is constructed. The efficiency and accuracy of potential implementations are compared. Furthermore, a source code transformer that automatically embeds the multicomplex data type into the original program is implemented. The transformer augments this approach with the advantage that programmers can focus solely on building the computation and only a minimum code rewriting is needed. We evaluate the performance and productivity of our library and the transformer in two applications: poisoning attack and mass-spring simulation.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11464814
書誌情報 情報処理学会論文誌プログラミング(PRO)

巻 15, 号 1, p. 17-17, 発行日 2022-01-05
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7802
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 16:33:35.632196
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3