Item type |
SIG Technical Reports(1) |
公開日 |
2021-11-24 |
タイトル |
|
|
タイトル |
Improving Intelligibility of Synthesized Speech in Noisy Condition with Dynamically Adaptive Machine Speech Chain |
タイトル |
|
|
言語 |
en |
|
タイトル |
Improving Intelligibility of Synthesized Speech in Noisy Condition with Dynamically Adaptive Machine Speech Chain |
言語 |
|
|
言語 |
eng |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
音声合成 |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
Nara Institute of Science and Technology/RIKEN, Center for Advanced Intelligence Project AIP |
著者所属 |
|
|
|
Japan Advanced Institute of Science and Technology/Nara Institute of Science and Technology/RIKEN, Center for Advanced Intelligence Project AIP |
著者所属 |
|
|
|
Nara Institute of Science and Technology/RIKEN, Center for Advanced Intelligence Project AIP |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology / RIKEN, Center for Advanced Intelligence Project AIP |
著者所属(英) |
|
|
|
en |
|
|
Japan Advanced Institute of Science and Technology / Nara Institute of Science and Technology / RIKEN, Center for Advanced Intelligence Project AIP |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology / RIKEN, Center for Advanced Intelligence Project AIP |
著者名 |
Sashi, Novitasari
Sakriani, Sakti
Satoshi, Nakamura
|
著者名(英) |
Sashi, Novitasari
Sakriani, Sakti
Satoshi, Nakamura
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
This paper focuses on the machine speech chain mechanism for improving the intelligibility of synthesized speech in noisy conditions. Our proposed text-to-speech synthesis (TTS) system synthesizes a speech by adapting to the situation. It will speak with a Lombard effect and high intelligibility in noisy conditions by processing auditory feedback that consists of speech-to-signal ratio (SNR) and automatic speech recognition (ASR) system loss. Our experiments show that auditory feedback improves TTS intelligibility in noisy environments. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
This paper focuses on the machine speech chain mechanism for improving the intelligibility of synthesized speech in noisy conditions. Our proposed text-to-speech synthesis (TTS) system synthesizes a speech by adapting to the situation. It will speak with a Lombard effect and high intelligibility in noisy conditions by processing auditory feedback that consists of speech-to-signal ratio (SNR) and automatic speech recognition (ASR) system loss. Our experiments show that auditory feedback improves TTS intelligibility in noisy environments. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN10442647 |
書誌情報 |
研究報告音声言語情報処理(SLP)
巻 2021-SLP-139,
号 24,
p. 1-2,
発行日 2021-11-24
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8663 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |