ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. システムとLSIの設計技術(SLDM)
  3. 2021
  4. 2021-SLDM-196

FPGA Based Accelerator for Neural Networks Computation with Flexible Pipelining

https://ipsj.ixsq.nii.ac.jp/records/214042
https://ipsj.ixsq.nii.ac.jp/records/214042
24138b48-3a8e-4b96-851f-8f9af459bbbd
名前 / ファイル ライセンス アクション
IPSJ-SLDM21196029.pdf IPSJ-SLDM21196029.pdf (1.1 MB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2021-11-24
タイトル
タイトル FPGA Based Accelerator for Neural Networks Computation with Flexible Pipelining
タイトル
言語 en
タイトル FPGA Based Accelerator for Neural Networks Computation with Flexible Pipelining
言語
言語 eng
キーワード
主題Scheme Other
主題 設計事例
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Engineering, The University of Tokyo
著者所属
Waseda Research Institute for Science and Engineering, Waseda University/JST, PRESTO
著者所属
System Design Research Center, University of Tokyo
著者所属(英)
en
Graduate School of Engineering, The University of Tokyo
著者所属(英)
en
Waseda Research Institute for Science and Engineering, Waseda University / JST, PRESTO
著者所属(英)
en
System Design Research Center, University of Tokyo
著者名 Qingyang, Yi

× Qingyang, Yi

Qingyang, Yi

Search repository
Heming, Sun

× Heming, Sun

Heming, Sun

Search repository
Masahiro, Fujita

× Masahiro, Fujita

Masahiro, Fujita

Search repository
著者名(英) Qingyang, Yi

× Qingyang, Yi

en Qingyang, Yi

Search repository
Heming, Sun

× Heming, Sun

en Heming, Sun

Search repository
Masahiro, Fujita

× Masahiro, Fujita

en Masahiro, Fujita

Search repository
論文抄録
内容記述タイプ Other
内容記述 FPGA is appropriate for fix-point neural networks computing due to high power efficiency and configurability. However, its design must be intensively refined to achieve high performance using limited hardware resources. We present an FPGA-based neural networks accelerator and its optimization framework, which can achieve optimal efficiency for various CNN models and FPGA resources. Targeting high throughput, we adopt layer-wise pipeline architecture for higher DSP utilization. To get the optimal performance, a flexible algorithm to allocate balanced hardware resources to each layer is also proposed, supported by activation buffer design. Through our well-balanced implementation of four CNN models on ZC706, the DSP utilization and efficiency are over 90%. For VGG16 on ZC706, the proposed accelerator achieves the performance of 2.58x, 1.53x and 1.35x better than the referenced non-pipeline architecture [1], pipeline architecture [2] and [3], respectively.
論文抄録(英)
内容記述タイプ Other
内容記述 FPGA is appropriate for fix-point neural networks computing due to high power efficiency and configurability. However, its design must be intensively refined to achieve high performance using limited hardware resources. We present an FPGA-based neural networks accelerator and its optimization framework, which can achieve optimal efficiency for various CNN models and FPGA resources. Targeting high throughput, we adopt layer-wise pipeline architecture for higher DSP utilization. To get the optimal performance, a flexible algorithm to allocate balanced hardware resources to each layer is also proposed, supported by activation buffer design. Through our well-balanced implementation of four CNN models on ZC706, the DSP utilization and efficiency are over 90%. For VGG16 on ZC706, the proposed accelerator achieves the performance of 2.58x, 1.53x and 1.35x better than the referenced non-pipeline architecture [1], pipeline architecture [2] and [3], respectively.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11451459
書誌情報 研究報告システムとLSIの設計技術(SLDM)

巻 2021-SLDM-196, 号 29, p. 1-6, 発行日 2021-11-24
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8639
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 16:55:33.611385
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3