ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. ゲームプログラミングワークショップ(GPWS)
  4. 2021

Improve Counterfactual Regret Minimization Agents Training by Setting Limitations ofNumbers of Steps in Games

https://ipsj.ixsq.nii.ac.jp/records/213444
https://ipsj.ixsq.nii.ac.jp/records/213444
18a1c6c5-45db-40ab-908d-4e0eea46026f
名前 / ファイル ライセンス アクション
IPSJ-GPWS2021023.pdf IPSJ-GPWS2021023.pdf (948.3 kB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Symposium(1)
公開日 2021-11-06
タイトル
タイトル Improve Counterfactual Regret Minimization Agents Training by Setting Limitations ofNumbers of Steps in Games
タイトル
言語 en
タイトル Improve Counterfactual Regret Minimization Agents Training by Setting Limitations ofNumbers of Steps in Games
言語
言語 eng
キーワード
主題Scheme Other
主題 Imperfect Information Games
キーワード
主題Scheme Other
主題 Counterfactual Regret Minimization
キーワード
主題Scheme Other
主題 Abstraction technique
キーワード
主題Scheme Other
主題 Curriculum Learning
キーワード
主題Scheme Other
主題 Card Game Cheat
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Graduate School of Arts and Sciences, the University of Tokyo
著者所属
Graduate School of Arts and Sciences, the University of Tokyo
著者所属(英)
en
Graduate School of Arts and Sciences, the University of Tokyo
著者所属(英)
en
Graduate School of Arts and Sciences, the University of Tokyo
著者名 Cheng, Yi

× Cheng, Yi

Cheng, Yi

Search repository
Tomoyuki, Kaneko

× Tomoyuki, Kaneko

Tomoyuki, Kaneko

Search repository
著者名(英) Cheng, Yi

× Cheng, Yi

en Cheng, Yi

Search repository
Tomoyuki, Kaneko

× Tomoyuki, Kaneko

en Tomoyuki, Kaneko

Search repository
論文抄録
内容記述タイプ Other
内容記述 Counterfactual Regret Minimization (CFR) has been one of the most famous algorithms to learn decent strategies of imperfect information games. Because CFR requires traversing the whole or part of game tree every iteration, it is infeasible to handle games with repetition where the game tree is not finite. In this paper, we introduce two abstraction techniques, one of which is to make the game tree finite and the other one is to reduce the size of game trees. Our experiments are conducted in an imperfect information card game called Cheat and we introduce the notion of “Health Points” a player has in each game to make the game length finite thus easier to handle. We utilize the information sets abstraction technique to speedup the training and evaluate how results from smaller games can improve training in larger ones. We also show Ordered Abstraction can help us increase the learning efficiency of specific agents.
論文抄録(英)
内容記述タイプ Other
内容記述 Counterfactual Regret Minimization (CFR) has been one of the most famous algorithms to learn decent strategies of imperfect information games. Because CFR requires traversing the whole or part of game tree every iteration, it is infeasible to handle games with repetition where the game tree is not finite. In this paper, we introduce two abstraction techniques, one of which is to make the game tree finite and the other one is to reduce the size of game trees. Our experiments are conducted in an imperfect information card game called Cheat and we introduce the notion of “Health Points” a player has in each game to make the game length finite thus easier to handle. We utilize the information sets abstraction technique to speedup the training and evaluate how results from smaller games can improve training in larger ones. We also show Ordered Abstraction can help us increase the learning efficiency of specific agents.
書誌情報 ゲームプログラミングワークショップ2021論文集

巻 2021, p. 117-123, 発行日 2021-11-06
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:09:35.309359
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3