ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. コンシューマ・デバイス&システム(CDS)
  3. Vol.11
  4. No.3

Person Identification Based on Accelerations Sensed in Smartphones with LSTM (Preprint)

https://ipsj.ixsq.nii.ac.jp/records/213176
https://ipsj.ixsq.nii.ac.jp/records/213176
0f5fc377-5753-44e3-9f53-901ff39a3984
名前 / ファイル ライセンス アクション
IPSJ-TCDS1103005.pdf IPSJ-TCDS1103005.pdf (2.2 MB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Trans(1)
公開日 2021-09-30
タイトル
タイトル Person Identification Based on Accelerations Sensed in Smartphones with LSTM (Preprint)
タイトル
言語 en
タイトル Person Identification Based on Accelerations Sensed in Smartphones with LSTM (Preprint)
言語
言語 eng
キーワード
主題Scheme Other
主題 [研究論文] accelerometer, machine learning, LSTM, personal identification
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Kogakuin University
著者所属
Kogakuin University
著者所属
Nagasaki University
著者所属
Ochanomizu University
著者所属
Kogakuin University
著者所属(英)
en
Kogakuin University
著者所属(英)
en
Kogakuin University
著者所属(英)
en
Nagasaki University
著者所属(英)
en
Ochanomizu University
著者所属(英)
en
Kogakuin University
著者名 Yoshihaya, Takahashi

× Yoshihaya, Takahashi

Yoshihaya, Takahashi

Search repository
Kosuke, Nakamura

× Kosuke, Nakamura

Kosuke, Nakamura

Search repository
Takeshi, Kamiyama

× Takeshi, Kamiyama

Takeshi, Kamiyama

Search repository
Masato, Oguchi

× Masato, Oguchi

Masato, Oguchi

Search repository
Saneyasu, Yamaguchi

× Saneyasu, Yamaguchi

Saneyasu, Yamaguchi

Search repository
著者名(英) Yoshihaya, Takahashi

× Yoshihaya, Takahashi

en Yoshihaya, Takahashi

Search repository
Kosuke, Nakamura

× Kosuke, Nakamura

en Kosuke, Nakamura

Search repository
Takeshi, Kamiyama

× Takeshi, Kamiyama

en Takeshi, Kamiyama

Search repository
Masato, Oguchi

× Masato, Oguchi

en Masato, Oguchi

Search repository
Saneyasu, Yamaguchi

× Saneyasu, Yamaguchi

en Saneyasu, Yamaguchi

Search repository
論文抄録
内容記述タイプ Other
内容記述 User identification is an important task for a variety of purposes such as authentication or providing personalized advice for improving user experience. In this paper, we propose a method for identifying a user who is holding a smartphone out of previously given target users from acceleration data obtained from the accelerometer in the smartphone using a deep neural network. This proposed method preliminary creates the model from the acceleration data of each user while walking in its training phase. This method identifies the user from acceleration data for identification based on this model in the classification phase. We evaluated the proposed method with the acceleration obtained from the actual eight and twelve users in two aspects, which were identifications including no-decision choice and that without no-decision choice. Our evaluation showed that the proposed method achieved accuracies higher than 95% for two- to five-class identification without no-decision. The proposed method identified the user with no or little false positive in evaluations with “no-decision.”
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 User identification is an important task for a variety of purposes such as authentication or providing personalized advice for improving user experience. In this paper, we propose a method for identifying a user who is holding a smartphone out of previously given target users from acceleration data obtained from the accelerometer in the smartphone using a deep neural network. This proposed method preliminary creates the model from the acceleration data of each user while walking in its training phase. This method identifies the user from acceleration data for identification based on this model in the classification phase. We evaluated the proposed method with the acceleration obtained from the actual eight and twelve users in two aspects, which were identifications including no-decision choice and that without no-decision choice. Our evaluation showed that the proposed method achieved accuracies higher than 95% for two- to five-class identification without no-decision. The proposed method identified the user with no or little false positive in evaluations with “no-decision.”
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12628043
書誌情報 情報処理学会論文誌コンシューマ・デバイス&システム(CDS)

巻 11, 号 3, 発行日 2021-09-30
ISSN
収録物識別子タイプ ISSN
収録物識別子 2186-5728
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:14:41.482847
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3