ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. マルチメディア、分散、協調とモバイルシンポジウム(DICOMO)
  4. 2021

IMUセンサーを用いたパンチ検出と分類手法の提案

https://ipsj.ixsq.nii.ac.jp/records/213082
https://ipsj.ixsq.nii.ac.jp/records/213082
12a0536e-d0a2-48ef-9893-11bcb126b87b
名前 / ファイル ライセンス アクション
IPSJ-DICOMO2021184.pdf IPSJ-DICOMO2021184.pdf (1.4 MB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Symposium(1)
公開日 2021-06-23
タイトル
タイトル IMUセンサーを用いたパンチ検出と分類手法の提案
言語
言語 eng
キーワード
主題Scheme Other
主題 Internet of Things
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
青山学院大学
著者所属
青山学院大学
著者所属
青山学院大学
著者名 花田, 祥典

× 花田, 祥典

花田, 祥典

Search repository
横窪, 安奈

× 横窪, 安奈

横窪, 安奈

Search repository
ロペズ, ギヨーム

× ロペズ, ギヨーム

ロペズ, ギヨーム

Search repository
論文抄録
内容記述タイプ Other
内容記述 Maintaining healthy living requires habitual physical activities. Nonetheless, staying motivated to work out regularly is challenging for most people. To solve this problem, automated personal supporting systems could help. This paper presents boxercise, a fitness standard exercise that mainly includes shadow-boxing exercises. The paper introduces punch activity detection and classification methods using acceleration and angular velocity signals recorded using a single smartwatch on the participant’s rear hand wrist. The proposed method is evaluated on our 10 participants aged between 17 and 53 years old (8 male and 2 female, age 27.8±12.8). As a result, we achieved 98.8% detection accuracy, 98.9% classification accuracy with SVM in-person-dependent (PD) case, and 91.1% classification accuracy with SVM in person-independent (PI) case. In addition, we estimated the real-time performance of each classification method and found out all our methods could classify a single punch in less than 0.1 seconds. The paper also discussed some points of improvement towards a practical boxercise supporting system.
論文抄録(英)
内容記述タイプ Other
内容記述 Maintaining healthy living requires habitual physical activities. Nonetheless, staying motivated to work out regularly is challenging for most people. To solve this problem, automated personal supporting systems could help. This paper presents boxercise, a fitness standard exercise that mainly includes shadow-boxing exercises. The paper introduces punch activity detection and classification methods using acceleration and angular velocity signals recorded using a single smartwatch on the participant’s rear hand wrist. The proposed method is evaluated on our 10 participants aged between 17 and 53 years old (8 male and 2 female, age 27.8±12.8). As a result, we achieved 98.8% detection accuracy, 98.9% classification accuracy with SVM in-person-dependent (PD) case, and 91.1% classification accuracy with SVM in person-independent (PI) case. In addition, we estimated the real-time performance of each classification method and found out all our methods could classify a single punch in less than 0.1 seconds. The paper also discussed some points of improvement towards a practical boxercise supporting system.
書誌情報 マルチメディア,分散協調とモバイルシンポジウム2021論文集

巻 2021, 号 1, p. 1304-1309, 発行日 2021-06-23
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:16:55.546560
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3