ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. マルチメディア、分散、協調とモバイルシンポジウム(DICOMO)
  4. 2021

A Supporting Technique for Comparative Analysis of Factory Work by Skilled and Unskilled Workers using Neural Network with Attention Mechanism

https://ipsj.ixsq.nii.ac.jp/records/213056
https://ipsj.ixsq.nii.ac.jp/records/213056
31601c51-1b98-4508-a050-84e6e592de53
名前 / ファイル ライセンス アクション
IPSJ-DICOMO2021158.pdf IPSJ-DICOMO2021158.pdf (3.0 MB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Symposium(1)
公開日 2021-06-23
タイトル
タイトル A Supporting Technique for Comparative Analysis of Factory Work by Skilled and Unskilled Workers using Neural Network with Attention Mechanism
タイトル
言語 en
タイトル A Supporting Technique for Comparative Analysis of Factory Work by Skilled and Unskilled Workers using Neural Network with Attention Mechanism
言語
言語 eng
キーワード
主題Scheme Other
主題 行動認識
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属(英)
en
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属(英)
en
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者名 Qingxin, Xia

× Qingxin, Xia

Qingxin, Xia

Search repository
Atsushi, Wada

× Atsushi, Wada

Atsushi, Wada

Search repository
Takanori, Yoshii

× Takanori, Yoshii

Takanori, Yoshii

Search repository
Yasuo, Namioka

× Yasuo, Namioka

Yasuo, Namioka

Search repository
Takuya, Maekawa

× Takuya, Maekawa

Takuya, Maekawa

Search repository
著者名(英) Qingxin, Xia

× Qingxin, Xia

en Qingxin, Xia

Search repository
Atsushi, Wada

× Atsushi, Wada

en Atsushi, Wada

Search repository
Takanori, Yoshii

× Takanori, Yoshii

en Takanori, Yoshii

Search repository
Yasuo, Namioka

× Yasuo, Namioka

en Yasuo, Namioka

Search repository
Takuya, Maekawa

× Takuya, Maekawa

en Takuya, Maekawa

Search repository
論文抄録
内容記述タイプ Other
内容記述 This study presents a method for identifying significant activity differences between skilled and unskilled factory workers by a neural network with an attention mechanism using wrist-worn accelerometer sensor data collected in real manufacturing. To discover skill knowledge from skilled workers, industrial engineers manually identify activity differences between skilled and unskilled workers, which is likely to obtain skill knowledge, by watching video recordings or sensor data. However, a factory has many workers and manual comparison between pairs of workers is time-consuming. We propose an attention-based neural network to visualize the importance of input segments that contribute to the classification output, which is useful to identify activity differences between workers.
論文抄録(英)
内容記述タイプ Other
内容記述 This study presents a method for identifying significant activity differences between skilled and unskilled factory workers by a neural network with an attention mechanism using wrist-worn accelerometer sensor data collected in real manufacturing. To discover skill knowledge from skilled workers, industrial engineers manually identify activity differences between skilled and unskilled workers, which is likely to obtain skill knowledge, by watching video recordings or sensor data. However, a factory has many workers and manual comparison between pairs of workers is time-consuming. We propose an attention-based neural network to visualize the importance of input segments that contribute to the classification output, which is useful to identify activity differences between workers.
書誌情報 マルチメディア,分散協調とモバイルシンポジウム2021論文集

巻 2021, 号 1, p. 1133-1140, 発行日 2021-06-23
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:17:24.835860
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3