ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 知能システム(ICS)
  3. 2021
  4. 2021-ICS-204

An Improved Approach to Generation and Detection of Out-of-Domain Texts

https://ipsj.ixsq.nii.ac.jp/records/212810
https://ipsj.ixsq.nii.ac.jp/records/212810
8c98a38d-c64b-412c-8b9a-c43c1f332a94
名前 / ファイル ライセンス アクション
IPSJ-ICS21204004.pdf IPSJ-ICS21204004.pdf (560.6 kB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2021-09-08
タイトル
タイトル An Improved Approach to Generation and Detection of Out-of-Domain Texts
タイトル
言語 en
タイトル An Improved Approach to Generation and Detection of Out-of-Domain Texts
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Kyushu Universtiy
著者所属
Kyushu Universtiy
著者所属(英)
en
Kyushu Universtiy
著者所属(英)
en
Kyushu Universtiy
著者名 Bo, Wang

× Bo, Wang

Bo, Wang

Search repository
Tsunenori, Mine

× Tsunenori, Mine

Tsunenori, Mine

Search repository
著者名(英) Bo, Wang

× Bo, Wang

en Bo, Wang

Search repository
Tsunenori, Mine

× Tsunenori, Mine

en Tsunenori, Mine

Search repository
論文抄録
内容記述タイプ Other
内容記述 Many approaches have been proposed to detect Out-of-Domain texts in user intent classification, but most of them are trained on In-Domain data which cannot utilize the huge potential of unlabeled data, or need many hard-to-obtain real Out-of-Domain data. Recently, an Out-of-Domain generation framework has been proposed, which overcame the drawbacks of previous work and got better results. However, the current implementation is far from practical because of its common but ineffective network implementation and unconsidered potential conflicts in the GAN training procedure. In this paper, we propose an improved approach to realize a better Out-of-Domain texts generation, where we modify the Autoencoder for faster learning of context data, and also regularize the output to decrease the difficulty of GAN imitation afterwards. For GAN, we utilize different activation scheme and a more moderate training signal to solve the training conflicts. Comprehensive experiments on three datasets and efficiency measurements show the practicality and efficiency of our new approach.
論文抄録(英)
内容記述タイプ Other
内容記述 Many approaches have been proposed to detect Out-of-Domain texts in user intent classification, but most of them are trained on In-Domain data which cannot utilize the huge potential of unlabeled data, or need many hard-to-obtain real Out-of-Domain data. Recently, an Out-of-Domain generation framework has been proposed, which overcame the drawbacks of previous work and got better results. However, the current implementation is far from practical because of its common but ineffective network implementation and unconsidered potential conflicts in the GAN training procedure. In this paper, we propose an improved approach to realize a better Out-of-Domain texts generation, where we modify the Autoencoder for faster learning of context data, and also regularize the output to decrease the difficulty of GAN imitation afterwards. For GAN, we utilize different activation scheme and a more moderate training signal to solve the training conflicts. Comprehensive experiments on three datasets and efficiency measurements show the practicality and efficiency of our new approach.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11135936
書誌情報 研究報告知能システム(ICS)

巻 2021-ICS-204, 号 4, p. 1-8, 発行日 2021-09-08
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-885X
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:22:00.439601
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3