ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. ソフトウェアエンジニアリングシンポジウム
  4. 2021

Machine Learning Design Patterns in Industry

https://ipsj.ixsq.nii.ac.jp/records/212679
https://ipsj.ixsq.nii.ac.jp/records/212679
b1665c08-8af7-4fc4-a030-5565616efbc9
名前 / ファイル ライセンス アクション
IPSJ-SES2021006.pdf IPSJ-SES2021006.pdf (45.6 kB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Symposium(1)
公開日 2021-08-30
タイトル
タイトル Machine Learning Design Patterns in Industry
タイトル
言語 en
タイトル Machine Learning Design Patterns in Industry
言語
言語 eng
キーワード
主題Scheme Other
主題 基調講演
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Google
著者所属(英)
en
Google
著者名 Valliappa, Lakshmanan

× Valliappa, Lakshmanan

Valliappa, Lakshmanan

Search repository
著者名(英) Valliappa, Lakshmanan

× Valliappa, Lakshmanan

en Valliappa, Lakshmanan

Search repository
論文抄録
内容記述タイプ Other
内容記述 Design patterns are formalized best practices to solve common problems when designing a software system. As machine learning moves from being a research discipline to a software one, it is useful to catalog tried-and-proven methods to help engineers tackle frequently occurring problems that crop up during the ML process. In this talk, I will cover five patterns (Hashed Feature, Neutral Class, Stateless Serving Function, Bridged Schema, Feature Store) that academic researchers often don’t think about but are very useful in practical situations that arise in industry. For data scientists and ML engineers, these patterns provide a way to apply hard-won knowledge from hundreds of ML experts to your own projects.
論文抄録(英)
内容記述タイプ Other
内容記述 Design patterns are formalized best practices to solve common problems when designing a software system. As machine learning moves from being a research discipline to a software one, it is useful to catalog tried-and-proven methods to help engineers tackle frequently occurring problems that crop up during the ML process. In this talk, I will cover five patterns (Hashed Feature, Neutral Class, Stateless Serving Function, Bridged Schema, Feature Store) that academic researchers often don’t think about but are very useful in practical situations that arise in industry. For data scientists and ML engineers, these patterns provide a way to apply hard-won knowledge from hundreds of ML experts to your own projects.
書誌情報 ソフトウェアエンジニアリングシンポジウム2021論文集

巻 2021, p. 12-12, 発行日 2021-08-30
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:25:13.633018
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3