ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. エンタテインメントコンピューティング(EC)
  3. 2021
  4. 2021-EC-60

エンドユーザ向けアボカド食べ頃分類モバイルアプリにおける深層距離学習を利用した分類手法の検討

https://ipsj.ixsq.nii.ac.jp/records/211391
https://ipsj.ixsq.nii.ac.jp/records/211391
dffad909-1703-45d9-b8ca-6914a29beb64
名前 / ファイル ライセンス アクション
IPSJ-EC21060005.pdf IPSJ-EC21060005.pdf (2.2 MB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2021-05-25
タイトル
タイトル エンドユーザ向けアボカド食べ頃分類モバイルアプリにおける深層距離学習を利用した分類手法の検討
タイトル
言語 en
タイトル Investigation of deep metric learning for mobile application that classifies avocado ripeness for end users.
言語
言語 jpn
キーワード
主題Scheme Other
主題 計測・認識・制御
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
中京大学大学院工学研究科情報工学専攻
著者所属
中京大学工学部情報工学科
著者所属(英)
en
Graduate School of Engineering,Chukyo University
著者所属(英)
en
School of Engineering,Chukyo University
著者名 杉本, 隼斗

× 杉本, 隼斗

杉本, 隼斗

Search repository
濱川, 礼

× 濱川, 礼

濱川, 礼

Search repository
著者名(英) Hayato, Sugimoto

× Hayato, Sugimoto

en Hayato, Sugimoto

Search repository
Rei, Hamakawa

× Rei, Hamakawa

en Rei, Hamakawa

Search repository
論文抄録
内容記述タイプ Other
内容記述 It is said that the eating time of an avocado can be determined using the color, texture, and firmness of the rind as indicators, but it is difficult to determine the eating time of an avocado with high accuracy only for experienced users, which is a problem faced by end users of avocados. In this study, we developed a deep learning model that classifies avocados into three classes (unripe, ripe, and overripe) based on image input, and implemented a mobile application that can be run on a smartphone equipped with the model. For the deep learning model, we investigated a classification method using deep metric learning. Deep metric learning has achieved many successes in face recognition tasks. It is considered useful when applying deep learning to datasets with small differences in image features between classes and a small amount of data for each class, and the dataset we collected in this study has the same characteristics. The model was able to classify the evaluation data with an accuracy of 89.77%.
論文抄録(英)
内容記述タイプ Other
内容記述 It is said that the eating time of an avocado can be determined using the color, texture, and firmness of the rind as indicators, but it is difficult to determine the eating time of an avocado with high accuracy only for experienced users, which is a problem faced by end users of avocados. In this study, we developed a deep learning model that classifies avocados into three classes (unripe, ripe, and overripe) based on image input, and implemented a mobile application that can be run on a smartphone equipped with the model. For the deep learning model, we investigated a classification method using deep metric learning. Deep metric learning has achieved many successes in face recognition tasks. It is considered useful when applying deep learning to datasets with small differences in image features between classes and a small amount of data for each class, and the dataset we collected in this study has the same characteristics. The model was able to classify the evaluation data with an accuracy of 89.77%.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12049625
書誌情報 研究報告エンタテインメントコンピューティング(EC)

巻 2021-EC-60, 号 5, p. 1-4, 発行日 2021-05-25
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8914
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:48:58.167236
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3