ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 量子ソフトウェア(QS)
  3. 2021
  4. 2021-QS-002

古典Quantum randomized encodingの不可能性

https://ipsj.ixsq.nii.ac.jp/records/210563
https://ipsj.ixsq.nii.ac.jp/records/210563
8c0775d5-3f38-44ce-a9cf-b93e88782f6c
名前 / ファイル ライセンス アクション
IPSJ-QS21002016.pdf IPSJ-QS21002016.pdf (759.9 kB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2021-03-22
タイトル
タイトル 古典Quantum randomized encodingの不可能性
タイトル
言語 en
タイトル Impossibility of classical quantum randomized encoding
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
京都大学基礎物理学研究所
著者名 森前, 智行

× 森前, 智行

森前, 智行

Search repository
著者名(英) Tomoyuki, Morimae

× Tomoyuki, Morimae

en Tomoyuki, Morimae

Search repository
論文抄録
内容記述タイプ Other
内容記述 Randomized encoding is a powerful cryptographic primitive with various applications such as secure multiparty computation, verifiable computation, parallel cryptography, and complexity lower-bounds. Intuitively, randomized encoding f of a function f is another function such that f(x) can be recovered from f(x), and nothing except for f(x) is leaked from f(x). Its quantum version, quantum randomized encoding, has been introduced recently [Brakerski and Yuen, arXiv:2006.01085]. Intuitively, quantum randomized encoding F of a quantum operation F is another quantum operation such that, for any quantum state ρ, F(ρ) can be recovered from F(ρ), and nothing except for F(ρ) is leaked from F(ρ). In this paper, we show that if quantum randomized encoding of BB84 state generations is possible with an encoding operation E, then a two-round verification of quantum computing is possible with a classical verifier who can additionally do the operation E. One of the most important goals in the field of the verification of quantum computing is to construct a verification protocol with a verifier as classical as possible. This result therefore demonstrates a potential application of quantum randomized encoding to the verification of quantum computing: if we can find a good quantum randomized encoding (in terms of the encoding complexity), then we can construct a good verification protocol of quantum computing. We, however, also show that too good quantum randomized encoding is impossible: if quantum randomized encoding with a classical encoding operation is possible, then the no-cloning is violated. We finally consider a natural modification of blind quantum computing protocols in such a way that the server gets the output like quantum randomized encoding. We show that the modified protocol is not secure.
論文抄録(英)
内容記述タイプ Other
内容記述 Randomized encoding is a powerful cryptographic primitive with various applications such as secure multiparty computation, verifiable computation, parallel cryptography, and complexity lower-bounds. Intuitively, randomized encoding f of a function f is another function such that f(x) can be recovered from f(x), and nothing except for f(x) is leaked from f(x). Its quantum version, quantum randomized encoding, has been introduced recently [Brakerski and Yuen, arXiv:2006.01085]. Intuitively, quantum randomized encoding F of a quantum operation F is another quantum operation such that, for any quantum state ρ, F(ρ) can be recovered from F(ρ), and nothing except for F(ρ) is leaked from F(ρ). In this paper, we show that if quantum randomized encoding of BB84 state generations is possible with an encoding operation E, then a two-round verification of quantum computing is possible with a classical verifier who can additionally do the operation E. One of the most important goals in the field of the verification of quantum computing is to construct a verification protocol with a verifier as classical as possible. This result therefore demonstrates a potential application of quantum randomized encoding to the verification of quantum computing: if we can find a good quantum randomized encoding (in terms of the encoding complexity), then we can construct a good verification protocol of quantum computing. We, however, also show that too good quantum randomized encoding is impossible: if quantum randomized encoding with a classical encoding operation is possible, then the no-cloning is violated. We finally consider a natural modification of blind quantum computing protocols in such a way that the server gets the output like quantum randomized encoding. We show that the modified protocol is not secure.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12894105
書誌情報 研究報告量子ソフトウェア(QS)

巻 2021-QS-2, 号 16, p. 1-12, 発行日 2021-03-22
ISSN
収録物識別子タイプ ISSN
収録物識別子 2435-6492
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 18:06:48.148165
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3