ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.62
  3. No.3

Novel Bi-directional Flow-based Traffic Generation Framework for IDS Evaluation and Exploratory Data Analysis

https://ipsj.ixsq.nii.ac.jp/records/210366
https://ipsj.ixsq.nii.ac.jp/records/210366
80e49da5-09b9-461f-a64a-349a9348c615
名前 / ファイル ライセンス アクション
IPSJ-JNL6203023.pdf IPSJ-JNL6203023.pdf (775.4 kB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2021-03-15
タイトル
タイトル Novel Bi-directional Flow-based Traffic Generation Framework for IDS Evaluation and Exploratory Data Analysis
タイトル
言語 en
タイトル Novel Bi-directional Flow-based Traffic Generation Framework for IDS Evaluation and Exploratory Data Analysis
言語
言語 eng
キーワード
主題Scheme Other
主題 [一般論文] traffic modeling, protocol behavior model, traffic generation, network intrusion detection
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Faculty of Information and Communication Technology, Mahidol University
著者所属
Faculty of Information and Communication Technology, Mahidol University
著者所属(英)
en
Faculty of Information and Communication Technology, Mahidol University
著者所属(英)
en
Faculty of Information and Communication Technology, Mahidol University
著者名 Korakoch, Wilailux

× Korakoch, Wilailux

Korakoch, Wilailux

Search repository
Sudsanguan, Ngamsuriyaroj

× Sudsanguan, Ngamsuriyaroj

Sudsanguan, Ngamsuriyaroj

Search repository
著者名(英) Korakoch, Wilailux

× Korakoch, Wilailux

en Korakoch, Wilailux

Search repository
Sudsanguan, Ngamsuriyaroj

× Sudsanguan, Ngamsuriyaroj

en Sudsanguan, Ngamsuriyaroj

Search repository
論文抄録
内容記述タイプ Other
内容記述 Flow-based network traffic information has been recently used to detect malicious intrusion. However, several available public flow-based datasets are unidirectional, and bidirectional flow-based datasets are rarely available. In this paper, a novel framework to generate bidirectional flow-based datasets for IDS evaluation is proposed. The generated dataset has the mixed combination of normal background traffic and attack traffic. The background traffic is based on the key traffic feature of the MAWI network traffic traces, and five popular attack traffics are generated based on their statistical traffic features. The generated dataset is characterized using the PCA approach, and we found out that benign and malicious traffic are distinct. With the proposed framework, a dataset of bi-directional flow-based traffic is generated and it would be used for evaluating an effective intrusion detection engine.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.29.256
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Flow-based network traffic information has been recently used to detect malicious intrusion. However, several available public flow-based datasets are unidirectional, and bidirectional flow-based datasets are rarely available. In this paper, a novel framework to generate bidirectional flow-based datasets for IDS evaluation is proposed. The generated dataset has the mixed combination of normal background traffic and attack traffic. The background traffic is based on the key traffic feature of the MAWI network traffic traces, and five popular attack traffics are generated based on their statistical traffic features. The generated dataset is characterized using the PCA approach, and we found out that benign and malicious traffic are distinct. With the proposed framework, a dataset of bi-directional flow-based traffic is generated and it would be used for evaluating an effective intrusion detection engine.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.29.256
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 62, 号 3, 発行日 2021-03-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 18:11:13.201271
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3