WEKO3
アイテム
An End-to-End BLE Indoor Localization Method Using LSTM
https://ipsj.ixsq.nii.ac.jp/records/208994
https://ipsj.ixsq.nii.ac.jp/records/208994ab4f783f-8660-4aa9-9733-ce94ce3cc9c0
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2021 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | Journal(1) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2021-01-15 | |||||||||||||
タイトル | ||||||||||||||
タイトル | An End-to-End BLE Indoor Localization Method Using LSTM | |||||||||||||
タイトル | ||||||||||||||
言語 | en | |||||||||||||
タイトル | An End-to-End BLE Indoor Localization Method Using LSTM | |||||||||||||
言語 | ||||||||||||||
言語 | eng | |||||||||||||
キーワード | ||||||||||||||
主題Scheme | Other | |||||||||||||
主題 | [特集:5G時代の社会を創るモバイル・高度交通システム(推薦論文)] location estimation, localization, BLE, deep learning, LSTM, end-to-end location estimation | |||||||||||||
資源タイプ | ||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||||
資源タイプ | journal article | |||||||||||||
著者所属 | ||||||||||||||
Graduate School of Engineering, Nagoya University | ||||||||||||||
著者所属 | ||||||||||||||
Disaster Prevention Research Institute, Kyoto University | ||||||||||||||
著者所属 | ||||||||||||||
Graduate School of Engineering, Nagoya University | ||||||||||||||
著者所属 | ||||||||||||||
Graduate School of Engineering, Nagoya University/Institutes of Innovation for Future Society, Nagoya University | ||||||||||||||
著者所属(英) | ||||||||||||||
en | ||||||||||||||
Graduate School of Engineering, Nagoya University | ||||||||||||||
著者所属(英) | ||||||||||||||
en | ||||||||||||||
Disaster Prevention Research Institute, Kyoto University | ||||||||||||||
著者所属(英) | ||||||||||||||
en | ||||||||||||||
Graduate School of Engineering, Nagoya University | ||||||||||||||
著者所属(英) | ||||||||||||||
en | ||||||||||||||
Graduate School of Engineering, Nagoya University / Institutes of Innovation for Future Society, Nagoya University | ||||||||||||||
著者名 |
Kenta, Urano
× Kenta, Urano
× Kei, Hiroi
× Takuro, Yonezawa
× Nobuo, Kawaguchi
|
|||||||||||||
著者名(英) |
Kenta, Urano
× Kenta, Urano
× Kei, Hiroi
× Takuro, Yonezawa
× Nobuo, Kawaguchi
|
|||||||||||||
論文抄録 | ||||||||||||||
内容記述タイプ | Other | |||||||||||||
内容記述 | This paper proposes an indoor localization method for Bluetooth Low Energy (BLE) devices using an end-to-end LSTM neural network. We focus on a large-scale indoor space where there is a tough environment for wireless indoor localization due to signal instability. Our proposed method adopts end-to-end localization, which means input is a time-series of signal strength and output is the estimated location at the latest time in the input. The neural network in our proposed method consists of fully-connected and LSTM layers. We use a custom-made loss function with 3 error components: MSE, the direction of travel, and the leap of the estimated location. Considering the difficulty of data collection in a short preparation term, the data generated by a simple signal simulation is used in the training phase, before training with a small amount of real data. As a result, the estimation accuracy achieves an average of 1.92m, using the data collected in GEXPO exhibition in Miraikan, Tokyo. This paper also evaluates the estimation accuracy assuming the troubles in a real operation. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.29(2021) (online) DOI http://dx.doi.org/10.2197/ipsjjip.29.58 ------------------------------ |
|||||||||||||
論文抄録(英) | ||||||||||||||
内容記述タイプ | Other | |||||||||||||
内容記述 | This paper proposes an indoor localization method for Bluetooth Low Energy (BLE) devices using an end-to-end LSTM neural network. We focus on a large-scale indoor space where there is a tough environment for wireless indoor localization due to signal instability. Our proposed method adopts end-to-end localization, which means input is a time-series of signal strength and output is the estimated location at the latest time in the input. The neural network in our proposed method consists of fully-connected and LSTM layers. We use a custom-made loss function with 3 error components: MSE, the direction of travel, and the leap of the estimated location. Considering the difficulty of data collection in a short preparation term, the data generated by a simple signal simulation is used in the training phase, before training with a small amount of real data. As a result, the estimation accuracy achieves an average of 1.92m, using the data collected in GEXPO exhibition in Miraikan, Tokyo. This paper also evaluates the estimation accuracy assuming the troubles in a real operation. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.29(2021) (online) DOI http://dx.doi.org/10.2197/ipsjjip.29.58 ------------------------------ |
|||||||||||||
書誌レコードID | ||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||
収録物識別子 | AN00116647 | |||||||||||||
書誌情報 |
情報処理学会論文誌 巻 62, 号 1, 発行日 2021-01-15 |
|||||||||||||
ISSN | ||||||||||||||
収録物識別子タイプ | ISSN | |||||||||||||
収録物識別子 | 1882-7764 |