ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. コンピュータビジョンとイメージメディア(CVIM)
  3. 2020
  4. 2020-CVIM-222

On the Quantification of the Mental Image of Visual Concepts for Multi-modal Applications

https://ipsj.ixsq.nii.ac.jp/records/204437
https://ipsj.ixsq.nii.ac.jp/records/204437
0652f70c-edc6-4460-8723-a3a8b253d724
名前 / ファイル ライセンス アクション
IPSJ-CVIM20222005.pdf IPSJ-CVIM20222005.pdf (10.4 MB)
Copyright (c) 2020 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2020-05-07
タイトル
タイトル On the Quantification of the Mental Image of Visual Concepts for Multi-modal Applications
タイトル
言語 en
タイトル On the Quantification of the Mental Image of Visual Concepts for Multi-modal Applications
言語
言語 eng
キーワード
主題Scheme Other
主題 D論セッション
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
National Institute of Informatics
著者所属
Mathematical & Data Science Center, Nagoya University/Graduate School of Informatics, Nagoya University
著者所属
Graduate School of Informatics, Nagoya University
著者所属
Institute of Innovation for Future Society, Nagoya University
著者所属
Graduate School of Informatics, Nagoya University
著者所属
Graduate School of Informatics, Nagoya University
著者所属(英)
en
National Institute of Informatics
著者所属(英)
en
Mathematical & Data Science Center, Nagoya University / Graduate School of Informatics, Nagoya University
著者所属(英)
en
Graduate School of Informatics, Nagoya University
著者所属(英)
en
Institute of Innovation for Future Society, Nagoya University
著者所属(英)
en
Graduate School of Informatics, Nagoya University
著者所属(英)
en
Graduate School of Informatics, Nagoya University
著者名 Marc, A. Kastner

× Marc, A. Kastner

Marc, A. Kastner

Search repository
Ichiro, Ide

× Ichiro, Ide

Ichiro, Ide

Search repository
Yasutomo, Kawanishi

× Yasutomo, Kawanishi

Yasutomo, Kawanishi

Search repository
Takatsugu, Hirayama

× Takatsugu, Hirayama

Takatsugu, Hirayama

Search repository
Daisuke, Deguchi

× Daisuke, Deguchi

Daisuke, Deguchi

Search repository
Hiroshi, Murase

× Hiroshi, Murase

Hiroshi, Murase

Search repository
著者名(英) Marc, A. Kastner

× Marc, A. Kastner

en Marc, A. Kastner

Search repository
Ichiro, Ide

× Ichiro, Ide

en Ichiro, Ide

Search repository
Yasutomo, Kawanishi

× Yasutomo, Kawanishi

en Yasutomo, Kawanishi

Search repository
Takatsugu, Hirayama

× Takatsugu, Hirayama

en Takatsugu, Hirayama

Search repository
Daisuke, Deguchi

× Daisuke, Deguchi

en Daisuke, Deguchi

Search repository
Hiroshi, Murase

× Hiroshi, Murase

en Hiroshi, Murase

Search repository
論文抄録
内容記述タイプ Other
内容記述 The semantic gap is the lack of coincidence between the information one can extract from data and its interpretation. It is an yet solved issue for multimedia applications like image captioning, where it is often challenging to select the best fitting wording out of a group of candidates. To create a measurement for the perceived differences between words, this doctoral research proposes the idea of analyzing crawled image data to gain a better semantic understanding of language and vision. Abstract words have a broad mental image due to them being less visually defined, while concrete words with a rather narrow visual feature space are visually easier to grasp. The core goal of this research is to approximate this perceived abstractness of those words as a metric. The thesis proposes two methods, looking at both relative and absolute measurements. For the relative method, a data-driven approach is proposed, while the absolute measurements train a machine-learned model on existing data from Psycholinguistics. Each method is evaluated using crowd-sourced data and compared to related approaches. With this, the thesis presents methods to analyze the mental image of words from different angles, targeting a way to quantify the semantic gap between vision and language.
論文抄録(英)
内容記述タイプ Other
内容記述 The semantic gap is the lack of coincidence between the information one can extract from data and its interpretation. It is an yet solved issue for multimedia applications like image captioning, where it is often challenging to select the best fitting wording out of a group of candidates. To create a measurement for the perceived differences between words, this doctoral research proposes the idea of analyzing crawled image data to gain a better semantic understanding of language and vision. Abstract words have a broad mental image due to them being less visually defined, while concrete words with a rather narrow visual feature space are visually easier to grasp. The core goal of this research is to approximate this perceived abstractness of those words as a metric. The thesis proposes two methods, looking at both relative and absolute measurements. For the relative method, a data-driven approach is proposed, while the absolute measurements train a machine-learned model on existing data from Psycholinguistics. Each method is evaluated using crowd-sourced data and compared to related approaches. With this, the thesis presents methods to analyze the mental image of words from different angles, targeting a way to quantify the semantic gap between vision and language.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11131797
書誌情報 研究報告コンピュータビジョンとイメージメディア(CVIM)

巻 2020-CVIM-222, 号 5, p. 1-14, 発行日 2020-05-07
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8701
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 20:12:06.500847
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3