ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. データベース(TOD)[電子情報通信学会データ工学研究専門委員会共同編集]
  3. Vol.18
  4. No.1

SARI: A Stage-aware Recognition Method for Ingredients Changing Appearance in Cooking Image Sequences

https://ipsj.ixsq.nii.ac.jp/records/2000767
https://ipsj.ixsq.nii.ac.jp/records/2000767
18a5768d-3acc-47b6-bf31-e1dba617271d
名前 / ファイル ライセンス アクション
IPSJ-TOD1801003.pdf IPSJ-TOD1801003.pdf (3.0 MB)
 2027年1月28日からダウンロード可能です。
Copyright (c) 2025 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, DBS:会員:¥0, IFAT:会員:¥0, DLIB:会員:¥0
Item type Trans(1)
公開日 2025-01-28
タイトル
言語 ja
タイトル SARI: A Stage-aware Recognition Method for Ingredients Changing Appearance in Cooking Image Sequences
タイトル
言語 en
タイトル SARI: A Stage-aware Recognition Method for Ingredients Changing Appearance in Cooking Image Sequences
言語
言語 eng
キーワード
主題Scheme Other
主題 [研究論文] multimedia, food recognition, cooking, recipe data, datasets
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Kyoto University
著者所属
The University of Tokyo
著者所属
Kyoto University
著者所属(英)
en
Kyoto University
著者所属(英)
en
The University of Tokyo
著者所属(英)
en
Kyoto University
著者名 Yixin,Zhang

× Yixin,Zhang

Yixin,Zhang

Search repository
Yoko,Yamakata

× Yoko,Yamakata

Yoko,Yamakata

Search repository
Keishi,Tajima

× Keishi,Tajima

Keishi,Tajima

Search repository
著者名(英) Yixin Zhang

× Yixin Zhang

en Yixin Zhang

Search repository
Yoko Yamakata

× Yoko Yamakata

en Yoko Yamakata

Search repository
Keishi Tajima

× Keishi Tajima

en Keishi Tajima

Search repository
論文抄録
内容記述タイプ Other
内容記述 Recognizing ingredients in cooking images is a challenging task due to the significant visual changes that ingredients undergo throughout the cooking process. As ingredients are prepared, cooked, and served, their appearances vary greatly between the beginning, intermediate, and finishing stages. Traditional object recognition methods, which assume constant object appearances, struggle with this variability and are often not good at accurately identifying ingredients at different cooking stages. To address this challenge, we propose a stage-aware recognition method specifically designed for dynamically changing ingredients in cooking images. Our approach introduces two techniques: 1. Stage-Wise Model Learning: This technique involves training separate models for each stage of the cooking process. By adapting models to specific stages, we can better capture the distinct visual characteristics of ingredients as their appearances change. 2. Stage-Aware Curriculum Learning: This technique begins training with data from the beginning cooking stages and progressively incorporates data from later stages. This gradual approach helps the model adapt to the evolving appearances of ingredients. Our experimental results, using our published dataset, demonstrate that our stage-aware methods significantly outperform models trained without stage considerations, achieving higher accuracy in ingredient recognition.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.33(2025) (online)
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Recognizing ingredients in cooking images is a challenging task due to the significant visual changes that ingredients undergo throughout the cooking process. As ingredients are prepared, cooked, and served, their appearances vary greatly between the beginning, intermediate, and finishing stages. Traditional object recognition methods, which assume constant object appearances, struggle with this variability and are often not good at accurately identifying ingredients at different cooking stages. To address this challenge, we propose a stage-aware recognition method specifically designed for dynamically changing ingredients in cooking images. Our approach introduces two techniques: 1. Stage-Wise Model Learning: This technique involves training separate models for each stage of the cooking process. By adapting models to specific stages, we can better capture the distinct visual characteristics of ingredients as their appearances change. 2. Stage-Aware Curriculum Learning: This technique begins training with data from the beginning cooking stages and progressively incorporates data from later stages. This gradual approach helps the model adapt to the evolving appearances of ingredients. Our experimental results, using our published dataset, demonstrate that our stage-aware methods significantly outperform models trained without stage considerations, achieving higher accuracy in ingredient recognition.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.33(2025) (online)
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11464847
書誌情報 情報処理学会論文誌データベース(TOD)

巻 18, 号 1, 発行日 2025-01-28
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7799
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-02-20 07:22:22.511095
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3