ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. 数理モデル化と応用(TOM)
  3. Vol.11
  4. No.3

Feature Representation Analysis of Deep Convolutional Neural Network using Two-stage Feature Transfer―An Application for Diffuse Lung Disease Classification

https://ipsj.ixsq.nii.ac.jp/records/192960
https://ipsj.ixsq.nii.ac.jp/records/192960
b0e4754c-574f-4ea1-a9dd-53e18c523617
名前 / ファイル ライセンス アクション
IPSJ-TOM1103008.pdf IPSJ-TOM1103008.pdf (5.1 MB)
Copyright (c) 2018 by the Information Processing Society of Japan
オープンアクセス
Item type Trans(1)
公開日 2018-12-20
タイトル
タイトル Feature Representation Analysis of Deep Convolutional Neural Network using Two-stage Feature Transfer―An Application for Diffuse Lung Disease Classification
タイトル
言語 en
タイトル Feature Representation Analysis of Deep Convolutional Neural Network using Two-stage Feature Transfer―An Application for Diffuse Lung Disease Classification
言語
言語 eng
キーワード
主題Scheme Other
主題 [オリジナル論文] deep convolutional neural networks, transfer learning, image recognition, textural recognition, medical imaging
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
National Institute of Advanced Industrial Science and Technology/University of Tsukuba
著者所属
National Institute of Advanced Industrial Science and Technology
著者所属
Yamaguchi University
著者所属
National Institute of Advanced Industrial Science and Technology/University of Electro-Communications
著者所属(英)
en
National Institute of Advanced Industrial Science and Technology / University of Tsukuba
著者所属(英)
en
National Institute of Advanced Industrial Science and Technology
著者所属(英)
en
Yamaguchi University
著者所属(英)
en
National Institute of Advanced Industrial Science and Technology / University of Electro-Communications
著者名 Aiga, Suzuki

× Aiga, Suzuki

Aiga, Suzuki

Search repository
Hidenori, Sakanashi

× Hidenori, Sakanashi

Hidenori, Sakanashi

Search repository
Shoji, Kido

× Shoji, Kido

Shoji, Kido

Search repository
Hayaru, Shouno

× Hayaru, Shouno

Hayaru, Shouno

Search repository
著者名(英) Aiga, Suzuki

× Aiga, Suzuki

en Aiga, Suzuki

Search repository
Hidenori, Sakanashi

× Hidenori, Sakanashi

en Hidenori, Sakanashi

Search repository
Shoji, Kido

× Shoji, Kido

en Shoji, Kido

Search repository
Hayaru, Shouno

× Hayaru, Shouno

en Hayaru, Shouno

Search repository
論文抄録
内容記述タイプ Other
内容記述 Transfer learning is a machine learning technique designed to improve generalization performance by using pre-trained parameters obtained from other learning tasks. For image recognition tasks, many previous studies have reported that, when transfer learning is applied to deep neural networks, performance improves, despite having limited training data. This paper proposes a two-stage feature transfer learning method focusing on the recognition of textural medical images. During the proposed method, a model is successively trained with massive amounts of natural images, some textural images, and the target images. We applied this method to the classification task of textural X-ray computed tomography images of diffuse lung diseases. In our experiment, the two-stage feature transfer achieves the best performance compared to a from-scratch learning and a conventional single-stage feature transfer. We also investigated the robustness of the target dataset, based on size. Two-stage feature transfer shows better robustness than the other two learning methods. Moreover, we analyzed the feature representations obtained from DLDs imagery inputs for each feature transfer models using a visualization method. We showed that the two-stage feature transfer obtains both edge and textural features of DLDs, which does not occur in conventional single-stage feature transfer models.
論文抄録(英)
内容記述タイプ Other
内容記述 Transfer learning is a machine learning technique designed to improve generalization performance by using pre-trained parameters obtained from other learning tasks. For image recognition tasks, many previous studies have reported that, when transfer learning is applied to deep neural networks, performance improves, despite having limited training data. This paper proposes a two-stage feature transfer learning method focusing on the recognition of textural medical images. During the proposed method, a model is successively trained with massive amounts of natural images, some textural images, and the target images. We applied this method to the classification task of textural X-ray computed tomography images of diffuse lung diseases. In our experiment, the two-stage feature transfer achieves the best performance compared to a from-scratch learning and a conventional single-stage feature transfer. We also investigated the robustness of the target dataset, based on size. Two-stage feature transfer shows better robustness than the other two learning methods. Moreover, we analyzed the feature representations obtained from DLDs imagery inputs for each feature transfer models using a visualization method. We showed that the two-stage feature transfer obtains both edge and textural features of DLDs, which does not occur in conventional single-stage feature transfer models.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11464803
書誌情報 情報処理学会論文誌数理モデル化と応用(TOM)

巻 11, 号 3, p. 74-83, 発行日 2018-12-20
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7780
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 23:56:23.100170
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3