ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.59
  3. No.4

深層学習によるソースコードコミットからの不具合混入予測

https://ipsj.ixsq.nii.ac.jp/records/187408
https://ipsj.ixsq.nii.ac.jp/records/187408
0a6a8291-0135-4230-8e13-166e921945ad
名前 / ファイル ライセンス アクション
IPSJ-JNL5904012.pdf IPSJ-JNL5904012.pdf (1.4 MB)
Copyright (c) 2018 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2018-04-15
タイトル
タイトル 深層学習によるソースコードコミットからの不具合混入予測
タイトル
言語 en
タイトル Just-in-Time Defect Prediction Applying Deep Learning to Source Code Changes
言語
言語 jpn
キーワード
主題Scheme Other
主題 [特集:ソフトウェア工学(特選論文)] 不具合予測,畳み込みニューラルネットワーク,変更ソースコード,ソースコード片,文脈
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
京都工芸繊維大学/産業技術総合研究所
著者所属
京都工芸繊維大学
著者所属
京都工芸繊維大学
著者所属
産業技術総合研究所
著者所属(英)
en
Kyoto Institute of Technology / National Institute of Advanced Industrial Science and Technology
著者所属(英)
en
Kyoto Institute of Technology
著者所属(英)
en
Kyoto Institute of Technology
著者所属(英)
en
National Institute of Advanced Industrial Science and Technology
著者名 近藤, 将成

× 近藤, 将成

近藤, 将成

Search repository
森, 啓太

× 森, 啓太

森, 啓太

Search repository
水野, 修

× 水野, 修

水野, 修

Search repository
崔, 銀惠

× 崔, 銀惠

崔, 銀惠

Search repository
著者名(英) Masanari, Kondo

× Masanari, Kondo

en Masanari, Kondo

Search repository
Keita, Mori

× Keita, Mori

en Keita, Mori

Search repository
Osamu, Mizuno

× Osamu, Mizuno

en Osamu, Mizuno

Search repository
Eun-Hye, Choi

× Eun-Hye, Choi

en Eun-Hye, Choi

Search repository
論文抄録
内容記述タイプ Other
内容記述 ソフトウェアの不具合予測は,ソフトウェアに潜む不具合を予測することで効率的なレビューやテストを可能にしようとするソフトウェア品質保証活動の1つである.従来の多くのソフトウェアの不具合予測では,ソースコード分析による不具合予測を行っているが,粒度が粗くまた不具合予測の結果のフィードバックが遅い.この問題を解決するために,ソフトウェアの変更がコミットされたときに,その変更によって不具合が起きるかどうかを予測する手法が提案され,近年注目を集めている.ソフトウェアの変更コミットの不具合予測に関する既存研究では,その変更に対するメトリクス(たとえば,修正されたファイル数,追加されたコード行数など)を計算した後に機械学習や深層学習を適用している.それに対して,本研究では,変更のソースコード片のみに対して深層学習を適用することで不具合を予測する手法,Word-Convolutional Neural Network(W-CNN)を提案する.我々は,評価実験によって,変更ソースコード片に対する深層学習を用いた不具合予測が可能であること,さらに,提案手法W-CNNは先行研究に比べて,学習の時間はかかるものの,不具合予測の精度が優れており,予測時間が短いことを示す.
論文抄録(英)
内容記述タイプ Other
内容記述 Defect prediction is an important task for preserving software quality. A lot of previous research has analyzed source code to predict defects; however, it contains a problem that is its prediction grain is too coarse and its feedback is too late for software developers. To achieve a more fine-grained prediction and an earlier feedback, several approaches that analyzes source code changes has been reported. Those approaches have applied various machine learning techniques and deep learning techniques to change metrics, such as the number of lines added, modified files, and modified directories. In this paper, we propose a novel approach for defect prediction called Word-Convolutional Neural Network (W-CNN), which applies CNN to the modified source code itself. Our evaluation results show that the proposed approach can improve the effectiveness of defect prediction with a small overhead on the prediction time.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 59, 号 4, p. 1250-1261, 発行日 2018-04-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 02:16:56.702186
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3