ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. ハイパフォーマンスコンピューティング(HPC)
  3. 2017
  4. 2017-HPC-162

Less is More: Accelerating Deep Neural Networks with Micro-Batching

https://ipsj.ixsq.nii.ac.jp/records/184902
https://ipsj.ixsq.nii.ac.jp/records/184902
1d1eb6b0-eb91-47f6-ba4d-97ca9a9b6f6d
名前 / ファイル ライセンス アクション
IPSJ-HPC17162022.pdf IPSJ-HPC17162022.pdf (933.3 kB)
Copyright (c) 2017 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2017-12-11
タイトル
タイトル Less is More: Accelerating Deep Neural Networks with Micro-Batching
タイトル
言語 en
タイトル Less is More: Accelerating Deep Neural Networks with Micro-Batching
言語
言語 eng
キーワード
主題Scheme Other
主題 機械学習
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Tokyo Institute of Technology
著者所属
ETH Zurich
著者所属
ETH Zurich
著者所属
Tokyo Institute of Technology
著者所属(英)
en
Tokyo Institute of Technology
著者所属(英)
en
ETH Zurich
著者所属(英)
en
ETH Zurich
著者所属(英)
en
Tokyo Institute of Technology
著者名 Yosuke, Oyama

× Yosuke, Oyama

Yosuke, Oyama

Search repository
Tal, Ben-Nun

× Tal, Ben-Nun

Tal, Ben-Nun

Search repository
Torsten, Hoefler

× Torsten, Hoefler

Torsten, Hoefler

Search repository
Satoshi, Matsuoka

× Satoshi, Matsuoka

Satoshi, Matsuoka

Search repository
著者名(英) Yosuke, Oyama

× Yosuke, Oyama

en Yosuke, Oyama

Search repository
Tal, Ben-Nun

× Tal, Ben-Nun

en Tal, Ben-Nun

Search repository
Torsten, Hoefler

× Torsten, Hoefler

en Torsten, Hoefler

Search repository
Satoshi, Matsuoka

× Satoshi, Matsuoka

en Satoshi, Matsuoka

Search repository
論文抄録
内容記述タイプ Other
内容記述 NVIDIA cuDNN is a low-level library that provides GPU kernels frequently used in deep learning. Specifically, cuDNN implements several equivalent convolution algorithms, whose performance and memory footprint may vary considerably, depending on the layer dimensions. When an algorithm is automatically selected by cuDNN, the decision is performed on a per-layer basis, and thus it often resorts to slower algorithms that fit the workspace size constraints. We present μ-cuDNN, a transparent wrapper library for cuDNN, which divides layer computation into several micro-batches. Based on Dynamic Programming and Integer Linear Programming, μ-cuDNN enables faster algorithms by decreasing the workspace requirements. We demonstrate the effectiveness of μ-cuDNN over the Caffe framework, achieving speedups of 1.63x for AlexNet and 1.21x for ResNet-18. These results indicate that using micro-batches can seamlessly increase the performance of deep learning, while maintaining the same memory footprint.
論文抄録(英)
内容記述タイプ Other
内容記述 NVIDIA cuDNN is a low-level library that provides GPU kernels frequently used in deep learning. Specifically, cuDNN implements several equivalent convolution algorithms, whose performance and memory footprint may vary considerably, depending on the layer dimensions. When an algorithm is automatically selected by cuDNN, the decision is performed on a per-layer basis, and thus it often resorts to slower algorithms that fit the workspace size constraints. We present μ-cuDNN, a transparent wrapper library for cuDNN, which divides layer computation into several micro-batches. Based on Dynamic Programming and Integer Linear Programming, μ-cuDNN enables faster algorithms by decreasing the workspace requirements. We demonstrate the effectiveness of μ-cuDNN over the Caffe framework, achieving speedups of 1.63x for AlexNet and 1.21x for ResNet-18. These results indicate that using micro-batches can seamlessly increase the performance of deep learning, while maintaining the same memory footprint.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10463942
書誌情報 研究報告ハイパフォーマンスコンピューティング(HPC)

巻 2017-HPC-162, 号 22, p. 1-9, 発行日 2017-12-11
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8841
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 03:08:55.464122
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3