ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. コンピュータビジョンとイメージメディア(CVIM)
  3. 2016
  4. 2016-CVIM-204

Mixed Features for Face Detection in Thermal Image

https://ipsj.ixsq.nii.ac.jp/records/175410
https://ipsj.ixsq.nii.ac.jp/records/175410
8a009fd5-52dc-4dff-9fae-993f902672cf
名前 / ファイル ライセンス アクション
IPSJ-CVIM16204001.pdf IPSJ-CVIM16204001.pdf (1.1 MB)
Copyright (c) 2016 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2016-11-02
タイトル
タイトル Mixed Features for Face Detection in Thermal Image
タイトル
言語 en
タイトル Mixed Features for Face Detection in Thermal Image
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Kyushu University
著者所属
Kyushu University
著者所属
Kyushu University
著者所属
Kyushu University
著者所属
Kyushu University
著者所属
Kyushu University
著者所属(英)
en
Kyushu University
著者所属(英)
en
Kyushu University
著者所属(英)
en
Kyushu University
著者所属(英)
en
Kyushu University
著者所属(英)
en
Kyushu University
著者所属(英)
en
Kyushu University
著者名 Chao, Ma

× Chao, Ma

Chao, Ma

Search repository
Ngo, Thanh Trung

× Ngo, Thanh Trung

Ngo, Thanh Trung

Search repository
Hideaki, Uchiyama

× Hideaki, Uchiyama

Hideaki, Uchiyama

Search repository
Hajime, Nagahara

× Hajime, Nagahara

Hajime, Nagahara

Search repository
Atsushi, Shimada

× Atsushi, Shimada

Atsushi, Shimada

Search repository
Rin-ichiro, Taniguchi

× Rin-ichiro, Taniguchi

Rin-ichiro, Taniguchi

Search repository
著者名(英) Chao, Ma

× Chao, Ma

en Chao, Ma

Search repository
Ngo, Thanh Trung

× Ngo, Thanh Trung

en Ngo, Thanh Trung

Search repository
Hideaki, Uchiyama

× Hideaki, Uchiyama

en Hideaki, Uchiyama

Search repository
Hajime, Nagahara

× Hajime, Nagahara

en Hajime, Nagahara

Search repository
Atsushi, Shimada

× Atsushi, Shimada

en Atsushi, Shimada

Search repository
Rin-ichiro, Taniguchi

× Rin-ichiro, Taniguchi

en Rin-ichiro, Taniguchi

Search repository
論文抄録
内容記述タイプ Other
内容記述 An infrared camera is able to capture temperature distribution as an infrared (IR) image. It is a powerful tool in human related applications, such as human face recognition in complex illumination and fever screening in public places relying on facial temperature. Since facial temperature is almost constant, it is easy to find the facial region on an IR image. However, a simple temperature thresholding is not always working for detecting face stably. It is a standard for face detection to use Adaboost with local features such as Haar-like, MB-LPB, and HoG in visible image. However, there are very few research works using these local features in IR domain. In this paper, we propose an AdaBoost based training method to mix these local features for face detection in IR domain. In experiment, we captured a dataset of 20 people including 14 males and 6 females with variations of 10 different distances, 21 poses, and with/without glasses. We showed the proposed mixed features has an advantage over all of the regular local features using leave-one-out cross-validation.
論文抄録(英)
内容記述タイプ Other
内容記述 An infrared camera is able to capture temperature distribution as an infrared (IR) image. It is a powerful tool in human related applications, such as human face recognition in complex illumination and fever screening in public places relying on facial temperature. Since facial temperature is almost constant, it is easy to find the facial region on an IR image. However, a simple temperature thresholding is not always working for detecting face stably. It is a standard for face detection to use Adaboost with local features such as Haar-like, MB-LPB, and HoG in visible image. However, there are very few research works using these local features in IR domain. In this paper, we propose an AdaBoost based training method to mix these local features for face detection in IR domain. In experiment, we captured a dataset of 20 people including 14 males and 6 females with variations of 10 different distances, 21 poses, and with/without glasses. We showed the proposed mixed features has an advantage over all of the regular local features using leave-one-out cross-validation.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11131797
書誌情報 研究報告コンピュータビジョンとイメージメディア(CVIM)

巻 2016-CVIM-204, 号 1, p. 1-5, 発行日 2016-11-02
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8701
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 06:13:37.358417
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3