ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 音声言語情報処理(SLP)
  3. 2016
  4. 2016-SLP-110

Using Continuous Representation of Various Linguistic Units for Recurrent Neural Network based TTS Synthesis

https://ipsj.ixsq.nii.ac.jp/records/147582
https://ipsj.ixsq.nii.ac.jp/records/147582
6b3c6559-ce04-4918-9ce1-d9fa951d229b
名前 / ファイル ライセンス アクション
IPSJ-SLP16110007.pdf IPSJ-SLP16110007.pdf (858.3 kB)
Copyright (c) 2016 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2016-01-29
タイトル
タイトル Using Continuous Representation of Various Linguistic Units for Recurrent Neural Network based TTS Synthesis
タイトル
言語 en
タイトル Using Continuous Representation of Various Linguistic Units for Recurrent Neural Network based TTS Synthesis
言語
言語 eng
キーワード
主題Scheme Other
主題 一般:対雑音、合成
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
National Institute of Informatics
著者所属
National Institute of Informatics
著者所属
National Institute of Informatics
著者所属(英)
en
National Institute of Informatics
著者所属(英)
en
National Institute of Informatics
著者所属(英)
en
National Institute of Informatics
著者名 Xin, Wang

× Xin, Wang

Xin, Wang

Search repository
Shinji, Takaki

× Shinji, Takaki

Shinji, Takaki

Search repository
Junichi, Yamagishi

× Junichi, Yamagishi

Junichi, Yamagishi

Search repository
著者名(英) Xin, Wang

× Xin, Wang

en Xin, Wang

Search repository
Shinji, Takaki

× Shinji, Takaki

en Shinji, Takaki

Search repository
Junichi, Yamagishi

× Junichi, Yamagishi

en Junichi, Yamagishi

Search repository
論文抄録
内容記述タイプ Other
内容記述 Building high-quality text-to-speech (TTS) systems without expert knowledge of the target language and/or manual time-consuming annotation of speech and text data is an important and challenging research topic in speech synthesis. Recently, the distributed representation of raw word inputs, called “word embedding”, have been used in various natural language processing tasks with success. Moreover, the word-embedding vectors have recently been used as the additional or alternative linguistic input features to a neural-network-based acoustic model for TTS systems. Since word-embedding approaches may provide means for obtaining effective linguistic representations from texts without requiring specialized knowledge of the language and/or manual time-consuming annotation, we further investigated the use of the word-embedding for neural-network-based TTS systems in two new directions. First, in addition to the standard word embedding vectors, we attempted to use phoneme, syllable, and phrase embedding vectors to verify whether continuous representations of these linguistic units may improve the segmental and suprasegmental quality of synthetic speech. Second, we examined the impact of normalization methods on the obtained embedded vectors before they were feed into the neural-network-based acoustic model.
論文抄録(英)
内容記述タイプ Other
内容記述 Building high-quality text-to-speech (TTS) systems without expert knowledge of the target language and/or manual time-consuming annotation of speech and text data is an important and challenging research topic in speech synthesis. Recently, the distributed representation of raw word inputs, called “word embedding”, have been used in various natural language processing tasks with success. Moreover, the word-embedding vectors have recently been used as the additional or alternative linguistic input features to a neural-network-based acoustic model for TTS systems. Since word-embedding approaches may provide means for obtaining effective linguistic representations from texts without requiring specialized knowledge of the language and/or manual time-consuming annotation, we further investigated the use of the word-embedding for neural-network-based TTS systems in two new directions. First, in addition to the standard word embedding vectors, we attempted to use phoneme, syllable, and phrase embedding vectors to verify whether continuous representations of these linguistic units may improve the segmental and suprasegmental quality of synthetic speech. Second, we examined the impact of normalization methods on the obtained embedded vectors before they were feed into the neural-network-based acoustic model.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10442647
書誌情報 研究報告音声言語情報処理(SLP)

巻 2016-SLP-110, 号 7, p. 1-6, 発行日 2016-01-29
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8663
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 17:36:39.325224
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

Xin, Wang, Shinji, Takaki, Junichi, Yamagishi, 2016: 情報処理学会, 1–6 p.

Loading...

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3