ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. JIP
  2. Vol.22
  3. No.2

Encouragement of Right Social Norms by Inverse Reinforcement Learning

https://ipsj.ixsq.nii.ac.jp/records/100930
https://ipsj.ixsq.nii.ac.jp/records/100930
8689a455-2359-4322-bd26-805eee89acdd
名前 / ファイル ライセンス アクション
IPSJ-JIP2202026.pdf IPSJ-JIP2202026.pdf (701.6 kB)
Copyright (c) 2014 by the Information Processing Society of Japan
オープンアクセス
Item type JInfP(1)
公開日 2014-04-15
タイトル
タイトル Encouragement of Right Social Norms by Inverse Reinforcement Learning
タイトル
言語 en
タイトル Encouragement of Right Social Norms by Inverse Reinforcement Learning
言語
言語 eng
キーワード
主題Scheme Other
主題 [Special Issue on Multiagent-based Societal Systems] inverse reinforcement learning, social norms
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Chiba University
著者所属
Japan Maritime Self-Defense Force
著者所属(英)
en
Chiba University
著者所属(英)
en
Japan Maritime Self-Defense Force
著者名 Sachiyo, Arai Kanako, Suzuki

× Sachiyo, Arai Kanako, Suzuki

Sachiyo, Arai
Kanako, Suzuki

Search repository
著者名(英) Sachiyo, Arai Kanako, Suzuki

× Sachiyo, Arai Kanako, Suzuki

en Sachiyo, Arai
Kanako, Suzuki

Search repository
論文抄録
内容記述タイプ Other
内容記述 This study is intended to encourage appropriate social norms among multiple agents. Effective norms, such as those emerging from sustained individual interactions over time, can make agents act cooperatively to optimize their performance. We introduce a “social learning” model in which agents mutually interact under a framework of the coordination game. Because coordination games have dual equilibria, social norms are necessary to make agents converge to a unique equilibrium. As described in this paper, we present the emergence of a right social norm by inverse reinforcement learning, which is an approach for extracting a reward function from the observation of optimal behaviors. First, we let a mediator agent estimate the reward function by inverse reinforcement learning from the observation of a master's behavior. Secondly, we introduce agents who act according to an estimated reward function in the multiagent world in which most agents, called citizens, have no way to act. Finally, we evaluate the effectiveness of introducing inverse reinforcement learning.
論文抄録(英)
内容記述タイプ Other
内容記述 This study is intended to encourage appropriate social norms among multiple agents. Effective norms, such as those emerging from sustained individual interactions over time, can make agents act cooperatively to optimize their performance. We introduce a “social learning” model in which agents mutually interact under a framework of the coordination game. Because coordination games have dual equilibria, social norms are necessary to make agents converge to a unique equilibrium. As described in this paper, we present the emergence of a right social norm by inverse reinforcement learning, which is an approach for extracting a reward function from the observation of optimal behaviors. First, we let a mediator agent estimate the reward function by inverse reinforcement learning from the observation of a master's behavior. Secondly, we introduce agents who act according to an estimated reward function in the multiagent world in which most agents, called citizens, have no way to act. Finally, we evaluate the effectiveness of introducing inverse reinforcement learning.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA00700121
書誌情報 Journal of information processing

巻 22, 号 2, p. 299-306, 発行日 2014-04-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-6652
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-21 11:30:55.612427
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3