WEKO3
アイテム
An Improved Shift Strategy for the Modified Discrete Lotka-Volterra with Shift Algorithm
https://ipsj.ixsq.nii.ac.jp/records/75151
https://ipsj.ixsq.nii.ac.jp/records/75151a0bb69db-ee55-4844-b7a3-7e42ebab94ff
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2011 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | SIG Technical Reports(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2011-07-11 | |||||||
タイトル | ||||||||
タイトル | An Improved Shift Strategy for the Modified Discrete Lotka-Volterra with Shift Algorithm | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | An Improved Shift Strategy for the Modified Discrete Lotka-Volterra with Shift Algorithm | |||||||
言語 | ||||||||
言語 | eng | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_18gh | |||||||
資源タイプ | technical report | |||||||
著者所属 | ||||||||
Nara Women's University | ||||||||
著者所属 | ||||||||
Kyoto University | ||||||||
著者所属 | ||||||||
Kyoto University | ||||||||
著者所属 | ||||||||
Kyoto University | ||||||||
著者所属 | ||||||||
Kyoto University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Nara Women's University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Kyoto University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Kyoto University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Kyoto University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Kyoto University | ||||||||
著者名 |
Masami, Takata
× Masami, Takata
|
|||||||
著者名(英) |
Masami, Takata
× Masami, Takata
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | We propose a new mathematical shift strategy for the modified discrete Lotka-Volterra with shift (mdLVs) algorithm. The mdLVs algorithm computes the singular values of bidiagonal matrices. It is known that the convergence of the mdLVs algorithm is accelerated when the shift is close to and less than the square of the smallest singular value of the input matrix. In the original mdLVs algorithm, the Johnson bound is adopted. Our improved mdLVs algorithm combines the Gerschgorin-type bound, the Kato-Temple bound, the Laguerre shift, and the generalized Newton shift. For different combinations, we discuss the computational time and number of iterations. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | We propose a new mathematical shift strategy for the modified discrete Lotka-Volterra with shift (mdLVs) algorithm. The mdLVs algorithm computes the singular values of bidiagonal matrices. It is known that the convergence of the mdLVs algorithm is accelerated when the shift is close to and less than the square of the smallest singular value of the input matrix. In the original mdLVs algorithm, the Johnson bound is adopted. Our improved mdLVs algorithm combines the Gerschgorin-type bound, the Kato-Temple bound, the Laguerre shift, and the generalized Newton shift. For different combinations, we discuss the computational time and number of iterations. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AN10505667 | |||||||
書誌情報 |
研究報告数理モデル化と問題解決(MPS) 巻 2011-MPS-84, 号 4, p. 1-6, 発行日 2011-07-11 |
|||||||
Notice | ||||||||
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. | ||||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |