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An Improved Shift Strategy for the Modified Discrete

Lotka-Volterra with Shift Algorithm
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and Yoshimasa Nakamura †2

We propose a new mathematical shift strategy for the modified discrete Lotka-
Volterra with shift (mdLVs) algorithm. The mdLVs algorithm computes the
singular values of bidiagonal matrices. It is known that the convergence of
the mdLVs algorithm is accelerated when the shift is close to and less than the
square of the smallest singular value of the input matrix. In the original mdLVs
algorithm, the Johnson bound is adopted. Our improved mdLVs algorithm
combines the Gerschgorin-type bound, the Kato-Temple bound, the Laguerre
shift, and the generalized Newton shift. For different combinations, we discuss
the computational time and number of iterations.

1. Introduction

Singular value decomposition (SVD) is one of the most important matrix oper-
ations in numerical algebra, and it plays an important role in fields such as data
search systems5) and image processing13).

Several SVD algorithms are composed by computing singular values and sin-
gular vectors. The modified discrete Lotka-Volterra with shift (mdLVs) algo-
rithm3),4),14),15) computes singular values; its speed and relative accuracy are
excellent.

The mdLVs iteration involves the computation of shifts. It is known that the
convergence of the mdLVs algorithm is accelerated when the shift is close to and
less than the square of the smallest singular value of the input matrix. The
Integrable-SVD3),14)–16), for which a library has been developed2), includes the
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original mdLVs algorithm. It uses the Johnson bound6) as shift strategy. This
bound can compute a sharper bound among various shift strategies. However,
since 2M − 1 square roots must be found, the Johnson bound has a large com-
putational time. Here, M is the dimension size of the input matrix. Therefore,
a fast and mathematically rigorous shift strategy is needed.

In this paper, we improve the shift strategy for the mdLVs algorithm. First,
we compute a lower bound of the smallest singular value from the Gerschgorin
theorem1). Let us call this bound the Gerschgorin-type bound. Since this is
always weaker than the Johnson bound after enough number of iterations, we then
consider the Kato-Temple bound7). We compare the two bounds to determine
a shift for the mdLVs algorithm. In some cases, the Laguerre shift11) or the
generalized Newton shift9),10) instead of the Gerschgorin-type bound is adopted.
The improved shift can be computed with M square-root operations.

In Section 2, we explain the mdLVs algorithm. In Section 3, we introduce
the Johnson bound. In Section 4, we describe the improved shift strategy for
the mdLVs algorithm. In Section 5, we present numerical experiments and con-
firm that the mdLVs algorithm with the new strategy is faster than the original
algorithm.

2. Modified discrete Lotka-Volterra with shift algorithm

In Section 2.1, we give a summary of the singular value computation based on
the discrete Lotka-Volterra (dLV) system. In Section 2.2, we outline the mdLVs
algorithm. In Section 2.3, we briefly describe the implementation of the mdLVs
algorithm.

2.1 Singular value computation based on the discrete Lotka-Volterra
system

In mathematical biology, the Lotka-Volterra (LV) system is known as a fun-
damental prey-predator model. In some cases, the LV system is a completely
integrable dynamical system with explicit solutions and sufficiently many conser-
vation laws. A time discretization

u
(n+1)
k =

1 + δ(n)u
(n)
k+1

1 + δ(n+1)u
(n+1)
k−1

u
(n)
k (1)
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of the LV system is known (cf. 3)). This system also has an explicit solution
and many conservation laws. Therefore, it is called the integrable dLV system.
Here, k (k = 1, 2, · · · , 2M − 1) indicates the kth species, the discrete time n

(n = 0, 1, 2, · · ·) corresponds to the iteration number of the algorithm, u
(n)
k is the

value of uk at n, and the arbitrary nonzero number δ(n) is a discrete step-size. Let
the initial value u

(0)
k be positive. In the case where δ(n) > 0, any subtraction and

division by zero do not occur in Eq.(1) and u
(n)
k is always positive. Consequently,

cancellation and numerical instability do not occur. Note that we do not need
to treat negative numbers in singular value computations.

The boundary condition and the initial condition are given by

u
(n)
0 ≡ 0, u

(n)
2M ≡ 0, (2)

u
(0)
k =

(bk)2

1 + δ(0)u
(0)
k−1

. (3)

respectively. Here, b2i−1 (> 0) and b2i (> 0) ( i: 1 ≤ i ≤ M ) are the diagonal
and upper-subdiagonal elements, respectively, of the M ×M bidiagonal matrix
B. When n →∞, u

(n)
2i−1 and u

(n)
2i converge to the square of the ith singular value

σi and 0, respectively. Thus the dLV system gives rise to a stable scheme for
computing the singular values3).

2.2 Improved speed via a shifted discrete Lotka-Volterra scheme
The mdLVs algorithm, the integrable dLV system with a shift, can compute

the singular values more quickly. The mdLVs algorithm is as follows4).
Let us introduce new elements w

(n)
k and v

(n)
k by

w
(n)
k = u

(n)
k (1 + δ(n)u

(n)
k−1), (4)

v
(n)
k = u

(n)
k (1 + δ(n)u

(n)
k+1). (5)

By Eq.(3), the initial w
(0)
k is just b2

k. The shifted integrable dLV system is defined
by adding to Eq.(1) a shift Θ at the nth iteration defined as 0 ≤ Θ < σ2

min where
σmin is the smallest singular value of B. This gives

w
(n+1)
2i−1 = v

(n)
2i−1 + v

(n)
2i−2 − w

(n+1)
2i−2 −Θ,

w
(n+1)
2i = v

(n)
2i−1v

(n)
2i /w

(n+1)
2i−1 . (6)

In general, the convergence is accelerated by increasing Θ. However, since the

positivity of u
(n)
k may be destroyed by a larger Θ at the nth iteration, this causes

a numerical instability. It is proved in4) that u
(n)
k > 0 if and only if 0 ≤ Θ < σ2

min.
Hence, we can determine the shift Θ for estimating σmin.

2.3 Algorithm for singular value computation based on the Lotka-
Volterra system

Each iteration in the mdLVs algorithm is as follows.
( 1 ) Calculate u

(n)
k from w

(n)
k via Eq.(4).

( 2 ) Calculate v
(n)
k from u

(n)
k via Eq.(5).

( 3 ) Calculate the shift Θ at the nth iteration.
( 4 ) Check Θ and calculate w

(n+1)
k accordingly.

• If Θ is valid, calculate w
(n+1)
k from v

(n)
k via Eq.(6).

• Otherwise, w
(n+1)
k = v

(n)
k .

( 5 ) If w
(n+1)
2i is much smaller than w

(n+1)
2i−1 , perform SPLIT or a deflation of the

dimension as described in12).
SPLIT, which divides the matrix into two parts, and the deflation are defined.

The arrays of the algorithm are calculated as follows. In Step 1), the array U =
(u(n)

1 , u
(n)
2 , · · · , u(n)

2M−1) is calculated from the array W = (w(n)
1 , w

(n)
2 , · · · , w(n)

2M−1).
Since we do not keep the data for each n, each array is a one-dimensional array
corresponding to the subscript. In Step 2), the array V = (v(n)

1 , v
(n)
2 , · · · , v(n)

2M−1)
is calculated from U . In Step 3), the shift Θ at the nth iteration is calculated
from V . Using the valid Θ, we overwrite W with V in Step 4).

3. Johnson bound

The theorem for the Johnson bound is a corollary of the Gerschgorin circle

theorem for
(B> + B)

2
. Since the singular values in B are equal to those in B>,

the Johnson bound for the smallest singular value of an upper bidiagonal matrix
B is given as the following inequality:

σmin ≥ min
1≤i≤M

[
b2i−1 − 1

2
(b2i + b2i−2)

]
, (7)

where b0 = b2M = 0.
In the mdLVs algorithm, bk becomes

√
v
(n)
k at the nth iteration, and the shift

Θ is defined as 0 ≤ Θ < σ2
min. Therefore, the Johnson shift ΘJ is computed
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using the Johnson bound as follows:

ΘJ =
(

1
2

(
min

1≤i≤M

[
2
√

v
(n)
2i−1 −

(√
v
(n)
2i +

√
v
(n)
2i−2

)]))2

. (8)

Since B is a positive definite matrix, we adopt a zero shift when the bound is
less than zero.

The number of square-root operations is 2M − 1, since
√

v
(n)
2i can be reused in

the (i + 1)th computation.

4. Improved shift strategy

The Johnson bound, which is used in the original mdLVs algorithm, needs
2M − 1 square-root operations. When numerical algorithms are computed using
microprocessors, square-root operations take longer than addition and multipli-
cation operations. Therefore, a new high-accuracy shift with fewer square-root
operations is needed. Consequently, we improve the shift strategy for the compu-
tation of the singular values. The improved strategy consists of the Gerschgorin-
type bound, the Kato-Temple bound, the Laguerre shift, and the generalized
Newton shift.

In Section 4.1, we describe Gerschgorin’s theorem for the smallest eigenvalue.
In Section 4.2, we explain the Kato-Temple inequality and the Kato-Temple
bound. In Section 4.3, we discuss the Laguerre shift, and in Section 4.4, we
introduce the generalized Newton shift. In Section 4.5, we discuss the improved
shift strategy and its implementation in the mdLVs algorithm.

4.1 Gerschgorin-type bound
Let A be an M ×M complex matrix.

A =




a1,1 a1,2

a2,1 a2,2 a2,3

. . . . . . . . .
aM−1,M−2 aM−1,M−1 aM−1,M

aM,M−1 aM,M




. (9)

For i = 1, · · · ,M , the Gerschgorin disk Di is defined as

Di =



z : |z − ai,i| ≤

M∑

j=1,j 6=i

|ai,j |


 . (10)

From the Gerschgorin theorem, the each eigenvalue of A exists in at least one
of the disks Di (i: i = 1, · · · ,M). Since the eigenvalues of the real symmetric
tridiagonal matrix BB> are equal to the square of the singular values of B,
we can get the Gerschgorin-type bound for (σmin)2, the square of the smallest
singular value of B, by applying the Gerschgorin theorem to BB>. Then, the
Gerschgorin-type shift ΘG is obtained using the Gerschgorin-type bound as the
follows:

ΘG = min
1≤i≤M

[(b2
2i−1 + b2

2i)− (b2i−1b2(i−1) + b2(i+1)−1b2i)], (11)

where b0 = b2M = 0. Eq.(11) may give a negative value. However, since BB> is
a symmetric positive definite matrix, we use zero shift in such cases.

In the mdLVs algorithm, Eq.(11) can be written as

ΘG = min
1≤i≤M

[
(v(n)

2i−1 + v
(n)
2i )−

(√
v
(n)
2i−1v

(n)
2(i−1) +

√
v
(n)
2(i+1)−1v

(n)
2i

)]
, (12)

where v
(n)
0 = v

(n)
2M = 0. From symmetry of BB>, Eq.(12) requires only M − 1

times of square-root operations.
4.2 Kato-Temple bound
Let A be a real symmetric matrix and x be a real vector. Let ρ = x>Ax be

its Rayleigh quotient with x>x = 1. For a given eigenvalue λ of A, we introduce
the Kato-Temple inequality.

Let us assume that the open interval (λ, λ̄) includes an eigenvalue λ of A as well
as the Rayleigh quotient ρ and that it does not include any other eigenvalues.
Then, we have an inequality given by the following theorem:

ρ− ε2

λ̄− ρ
≤ λ ≤ ρ +

ε2

ρ− λ
, (13)

where ε2 =‖ Ax− ρx ‖22.
In the following discussion, we consider an application of the Kato-Temple

inequality for the smallest eigenvalue λmin of the symmetric positive definite
tridiagonal matrix of the form A = BB>, except M ≤ 2. The eigenvalues λi of
A satisfy 0 < λM < λM−1 < · · · < λ1. Let A(i) be a i × i submatrix of A such
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that |A(i)| is the ith principal minor determinant of A. Let {λ(i)
j }j=1,...,i be a

set of eigenvalues of A(i). Note that A = A(M) and λj = λ
(M)
j . The separation

theorem (interlacing property)8) for eigenvalues of symmetric tridiagonal matrices
is λ

(i)
i < λ

(i−1)
i−1 < λ

(i)
i−1 < λ

(i−1)
i−2 < · · · < λ

(i)
1 for i = 1, . . . , M .

Define a sequence {ti} by t1 = b2
1+b2

2, ti+1 = b2
2(i+1)−1+b2

2(i+1)−b2i−1b2(i−1)/ti
for i = 1, 2, . . . , M − 2, tM = b2

2M−1 − b2M−1b2(M−1)/tM−1. Since |A(i)| =
t1t2 · · · ti > 0, we see that ti > 0. By definition, we have

b2
2M−1 > tM =

|A(M)|
|A(M−1)|

=
λ

(M)
1 · · ·λ(M)

M

λ
(M−1)
1 · · ·λ(M−1)

M−1

=
λ

(M)
1

λ
(M−1)
1

· · · λ
(M)
M−1

λ
(M−1)
M−1

λ
(M)
M

> λ
(M)
M = λM . (14)

Now we have a candidate for the Rayleigh quotient ρ such that λM < ρ. Let us
choose the unit vector x for

x = (0, . . . , 0, 1)>. (15)

The Rayleigh quotient is then given by

ρ = x>Ax = b2
2M−1 (> λM ). (16)

Finally, we consider how to choose the right endpoint λ̄ of the open interval (λ, λ̄)
including λm, and not including any other eigenvalues. The separation theorem
says that a good bound of the smallest eigenvalue λ

(m−1)
m−1 of the submatrix

A(M−1) =




b2
1 + b2

2 b3b2

b3b2 b2
3 + b2

4 b5b4

. . . . . . . . .
b2M−3b2M−4 b2

2M−3 + b2
2M−2




. (17)

may give λ̄ such that the assumption λM < ρ < λ̄ is satisfied. In this case, we

obtain the Kato-Temple bound ΘK of the smallest eigenvalue λM of A from the
Kato-Temple inequality. The Kato-Temple bound ΘK is given as follows:

ΘK = ρ− ε2

λ̄− ρ

= b2
2M−1 −

‖ Ax− ρx ‖22
λ̄− b2

2M−1

= b2
2M−1 −

b2
2M−1b

2
2(M−1)

λ̄− b2
2M−1

(18)

≤ λM .

The bound Θ(M−1) of λ
(M−1)
M−1 should be computed using the original bound, for

example, the Gerschgorin-type bound and the generalized Newton bound. We
call such a bound an auxiliary bound. If the assumption Θ(M−1) > b2

2M−1 (= ρ)
is satisfied, we obtain the Kato-Temple bound by Eq.(18) where λ̄ = Θ(M−1).

4.3 Laguerre shift
Let us set J

(−)
1 = trace(BB>)−1 and J

(−)
2 = trace((BB>)2)−1. The Laguerre

shift ΘL is defined as follows11) :

ΘL =
1

J
(−)
1

· M

1 +

√√√√(M − 1)

(
M

J
(−)
2

(J (−)
1 )2

− 1

) > 0. (19)

Theoretically,
(

M
J

(−)
2

(J
(−)
1 )2

− 1
)

is positive, however computationally, the value

is occasionally negative.
When the iteration number n is small, the Gerschgorin-type bound may be

non-positive. On the other hand, in almost cases, the Laguerre shift ΘL becomes

positive, since
(

M
J

(−)
2

(J
(−)
1 )2

− 1
)

is non-negative. However, computationally, if

ai,i−(ai,i−1+ai,i+1) ≤ 0 for some i (i: (1−κ)M ≤ i ≤ M), then the Laguerre shift
is not so close to the smallest singular value when the iteration number is small.
Here κ ∈ (0, 1) is a constant. Therefore, if all the expressions ai,i−(ai,i−1+ai,i+1)
are positive for (1−κ)M ≤ i ≤ M , we calculate the Laguerre shift ΘL instead of
returning zero derived from the Gerschgorin theorem. Experimentally, κ = 0.02
is the best choice.
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4.4 Generalized Newton shift
The generalized Newton bound of the smallest singular value σmin of B is given

as follows8):

Θ(M)
p = (trace(B>B)−p)−

1
2p =

1
(

1
σ2p

1

+ · · ·+ 1
σ2p

M

) 1
2p

> 0, (20)

where p is an arbitrary positive integer. These bounds have the properties listed
in 9) 10).

Θ(M)
1 < Θ(M)

2 < · · · < σM , (21)
lim

p→∞
Θ(M)

p = σM . (22)

Then, (Θ(M)
p )2 (p = 1, 2, . . .) can be used. Let us call (Θ(M)

p )2 the generalized
Newton shift of order p.

The generalized Newton shift (Θ(M)
p )2 can be computed within O(Mp2) flops

using a recurrence-relation formula. This proof for the computational cost should
be discussed in another paper, on which T. Yamashita, K. Kimura, and Y. Naka-
mura are working.

4.5 New shift strategy and its implementation
In most microprocessors, a square-root operation takes longer time than addi-

tion and multiplication operations. Therefore, the number of square-root opera-
tions should be reduced.

The Johnson bound requires 2M − 1 times of square-root operations. On
the other hand, the Gerschgorin-type bound needs just M − 1 times of square-
root operations. Consequently, the Gerschgorin-type bound is expected as a
measure to improve the shift strategy with the Johnson bound. However, we
have to consider the following possibilities. The Gerschgorin-type bound ΘG

may be smaller than the Johnson bound ΘJ . Especially, after enough number of
iterations, since it holds

ΘJ =
(√

v
(n)
2M−1 −

1
2

√
v
(n)
2(M−1)

)2

, (23)

ΘG = v
(n)
2M−1 −

√
v
(n)
2M−1v

(n)
2(M−1), (24)

Table 1 Computation time and iteration number in each shift

computation time[sec.] iteration number
SHIFT(J) 27.61 315021
SHIFT(G) 23.06 368773
SHIFT(GK) 23.09 362114
SHIFT(GKL) 20.78 206941

in the mdLVs algorithm, we have ΘJ > ΘG.
Furthermore, the Gerschgorin-type bound may give a non-positive value. Then,

we devise computation of shift as follows. If the Gerschgorin-type bound gives
a positive value, we compute the Kato-Temple bound and adopt the square of
larger bound between these two bounds as the shift. If the Gerschgorin-type
bound gives a non-positive value, we compute the Laguerre shift or take shift
zero according to the condition described in the Section 4.3. If the Laguerre

shift numerically gives a complex number since
(

M
J

(−)
2

(J
(−)
1 )2

− 1
)

is occasionally

negative, then we compute the generalized Newton shift.

5. Numerical experiments

To confirm the performance of the improved shift strategy, the computational
time and number of iterations for the mdLVs algorithm in 2) with four shift
strategies. The shifts are as follows:
• SHIFT(J): Johnson bound
• SHIFT(G): Gerschgorin-type bound
• SHIFT(GK): SHIFT(G) and Kato-Temple bound
• SHIFT(GKL): SHIFT(GK), Laguerre and generalized Newton shifts.
We use a computer with an Intel(R) Xeon(R) X5570@2.93GHz CPU and 32GB

of memory. Fedora 13 is installed on this computer. The input matrices B are
bidiagonal and the diagonal and subdiagonal elements of B are set randomly
in an interval [0, 1]. The dimension is 30000, We set κ = 0.02 and δ(n) = 1,
respectively.

Table 1 gives the average computational time and number of iterations for 100
matrices.

SHIFT(G) and SHIFT(GK) require more iterations than SHIFT(J) does. This
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implies that ΘJ tends to be stronger than ΘG and ΘK . Thus, the Gerschgorin-
type bound itself nor the combination of the Gerschgorin-type bound and the
Kato-Temple bound lead to a suitable shift. In spite of much the number of
iterations, the computational time of SHIFT(G) and SHIFT(GK) are shorter
than that of SHIFT(J). This is because of the numbers of square-root operations
in SHIFT(G) and SHIFT(GK) are smaller than that in SHIFT(J). A square-root
operation requires relatively large computational time.

On the other hand, SHIFT(GKL) gives better results in both the computa-
tional time and the number of iterations than SHIFT(J). In SHIFT(GKL), when
the Gerschgorin-type bound returns non-positive value, the Laguerre shift is com-
puted under the condition.We suppose such result attained from utilization of the
Laguerre shift. Therefore, we recommend SHIFT(GKL) as a shift strategy for
the mdLVs algorithm.

6. Conclusions

In this paper, we have improved the shift strategy for the mdLVs algorithm with
the Johnson bound. The improved strategy utilizes the Gerschgorin-type bound,
the Kato-Temple bound, the Laguerre shift, and the generalized Newton shift.
This improvement takes advantage of less times of square-root operations of the
Gerschgorin-type bound than the Johnson bound. There are possibilities that the
Gerschgorin-type bound gives a smaller value than the Johnson bound or a non-
positive value. Then, we consider the Kato-Temple bound, the Laguerre shift,
and the generalized Newton shift. To validate the performance of the improved
strategy, we explored the computational time and the number of iterations. The
result shows that the improved strategy is efficient.

In future work, we plan to study the relative errors of the computed singular
values in the improved shift strategy.
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