WEKO3
アイテム
Error Propagation in the Solution of Tridiagonal Liner Equations
https://ipsj.ixsq.nii.ac.jp/records/60314
https://ipsj.ixsq.nii.ac.jp/records/603141544e7ac-9240-4c77-9995-2b3c875f7c7d
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 1965 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | InfP(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 1965-01-01 | |||||||
タイトル | ||||||||
タイトル | Error Propagation in the Solution of Tridiagonal Liner Equations | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | Error Propagation in the Solution of Tridiagonal Liner Equations | |||||||
言語 | ||||||||
言語 | eng | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||
資源タイプ | journal article | |||||||
著者所属 | ||||||||
College of Science and Engineering Nihon University Tokyo. | ||||||||
著者所属(英) | ||||||||
en | ||||||||
College of Science and Engineering, Nihon University, Tokyo. | ||||||||
著者名 |
Hideko, Nagasaka
× Hideko, Nagasaka
|
|||||||
著者名(英) |
Hideko, Nagasaka
× Hideko, Nagasaka
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | The degree of ill-conditioning of a matrix A is measured by its condition number ?A?・?A-1? where ?A? is the norm of A.In particular if A is symmetric the norm can be taken as ?A?=|λ1| and ?A-1?=|λn|-1 where λ1 denotes the numerically largest eigenvalue and λn the smallest one.If the condition number takes a large value it leads to the inaccuracy of the numerical solution of linear equations AX=b and it is usually thought that the inaccuracy of the numerical solution of linear equations is due mainly to such a sort of ill-conditioning.We want to show in the following remarkable examples that there is an another cause which gives the inaccuracy of the solution of linear equations. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | The degree of ill-conditioning of a matrix A is measured by its condition number 窶泡窶磨E窶泡-1窶髦,where 窶泡窶髦 is the norm of A.In particular,if A is symmetric,the norm can be taken as 窶泡窶髦=|λ1| and 窶泡-1窶髦=|λn|-1,where λ1 denotes the numerically largest eigenvalue and λn the smallest one.If the condition number takes a large value,it leads to the inaccuracy of the numerical solution of linear equations AX=b,and it is usually thought that the inaccuracy of the numerical solution of linear equations is due mainly to such a sort of ill-conditioning.We want to show,in the following remarkable examples,that there is an another cause which gives the inaccuracy of the solution of linear equations. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AA00674393 | |||||||
書誌情報 |
Information Processing in Japan 巻 5, 号 0, p. 38-44, 発行日 1965-01-01 |
|||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |