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Error Propagation in the Solution
of Tridiagonal Liner Equations

HIDEKO NAGASAKA*

The degree of ill-conditioning of a matrix 4 is measured by its condition number
TAlll A", where || Al is the norm of A. In particular, if A is symmetric, the
norm can be taken as || All=|2,] and || A~t||=|2.|"%, where 2, denotes the numeri-
cally largest eigenvalue and A. the smallest one. If the condition number takes a
large value, it leads to the inaccuracy of the numerical solution of linear equations
AX=0, and it is usually thought that the inaccuracy of the numerical solution of
linear equations is due mainly to such a sort of ill-conditidning.

We want to show, in the following remarkable examples, that there is an another
cause which gives the inaccuracy of the solution of linear equations.

1. Problems
We study in this paper linear equations which are of the following tridiagonal

form
bxy+cx, =k,
ax,+bxs+cx =k,
Clx3+bX5 +cxy =5 B ( 1 )

AXn-1+bx,=k, ,
where ki=b-+c¢, b=a-+b+c, k.=a-+b. We know previously that the exact values
of the unknowns are
Xi=xy=....=x,=1,
which can be taken as the standard of comparison against the numerical solution
obtained by several methods of solution.

Now let us try to solve the above equations by the Gauss elimination method.
First the process of forward-elimination is done eliminating the unknows in the
order X, Xs...., X,» At the last stage of this process we obtain the value of the
unknown x.. Next starting from this value of x., the process of back-substitution
gives the values of the unknowns in the order x,-1, Xp-s,...., x;.

2. Examples
When the above method is applied to (1), many types of numerical solutions
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appear corresponding to the combinations of values of ¢, b, ¢. Three of these

types are given in Table 1. (Numerical value such as —3.169422 denotes —3.169

X 10+22)

Table 1.
Case 1 it 111
(a, b, ¢ (1, 6, 8) @, 6, 1) (12, 25, 12)
ala, cla 1/4, 2 2, 1/4 3/4, 3/4
n 100 48 100
X, 7.8532415 —O01 1.0000000 400 | 1.0000000 400
X, 11610069 00 99999988 —01 | 1.0000000 —+00
X, 9.0607937 —01 1.0000002 00 | 1.0000000 00
X, 1.0503146 00 9.9999970 —01 | 1.0000000 +00
| | | l
| | | |
| | | |
Xy | —1.2022295 406 |
Xz | 2.0610703 06 |
Xus | —2.7480914 06 |
| | |
| | |
Xor 9.9999996 —01 1.0000000 00
Xog 10000000 -+00 1.0000000 00
Xso 9.9999996 —01 1.0000000 00
Kuno 1.0000000 00 1.0000000 00
Table 2.
Case I II -
(@ b, ¢ (1, 6, 8 @, 6, 1) (12, 25. 12)
ala, bla 1/4, 2 2, 1/4 3/4, 3/4
n 100 48 100
X, —31601204 +22 | 10000000 00 | 9.9999996 —01
X, 23768403 +22 | 9.9999988 —01 | 1.0000001 00
X, —1.3864901 422 |  1.0000002 +00 | 9.9999995 —o1
X, 74276254 +21 | 9.9999970 —01 | 1.0000001 -+00
| | | |
| | | |
| ! | |
o | 6.2499995 -+14 |
Xy | —2.4999999 415 |
X | 1.0000000 -+16 [
| | |
! | |
Xor 09999916 —01 9.9999994 —01
Xos 1.0000004 00 1.0000001 400
Xao 9.9999976 —01 9.9999987 —01
X100 1.0000001 00 1.0000002 00
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The main character of these three types is as follows. In case I, during the
forward-elimination, the rounding errors introduced in an intermediate stage do not
propagate to the last stage, and we obtain x»=1 which is the exact value of the
last unknown. While at the process of back-substitution, the errors grow with the
advancement of the process, and we obtain the erroneous results for the values of
earlier unknowns. In case II, the tendency is quile opposite to that of the case I
Errors grow during the forward-elimination, while they vanish in the process of
back-substitution. Finally case III gives an example in which errors do not appear
in both processes.

To emphasize the above tendency, we made the experiments shown in Table 2.
In these experiments, in place of the unknown x., we put the values which are
different from the results of the last stage of the forward-elimination. Table 2
gives the values of the unknowns obtained by the back-substitution starting from
these hypothetical values of x.. It exaggeratedly shows error-growing tendency of
the back-substitution for the case I, and also shows its error-diminishing tendency
for the case II. Meanwhile for the case IIl, errors remain to be of the same order
as at the starting point.

3. Condition Number and Pivots

Let us examine the reason for the above results. First we notice that, in these
examples, the coefficient matrix of (1) is far from singular and its condition number
is not large. This is seen in the following way. The coeflicient matrix (which is
symmetric) of (1) has the eigenvalues* '

R W P _@“ S T y
Ai=b—2+ac cos P (=12, ....,n)),

and its condition number is

max | 2| ]_b{—l—2~/%cos7£—1—
P=- = ;

min |2 min |9 /7. T

p 1 b—24ac cos |

If b*—4ac>0 (three cases in Table 1 and 2 satisfy this condition), the numerator
and the denominator of the above expression do not vanish, and we obtain

0]+ 2 Jac

D
P =2 dac

and from this inequality we can see that in this case the equations (1) do not

belong to the ill-conditioned type in the sense explained at the beginning of this paper.
For the sake of the further examination, we give the scheme of transition from

the (m—1)-th stage to the m-th of the forward-elimination. This is as follows:

* Proof of this retation is due to Y. lItagaki (The National Aerospace Laboralory, Tokyo).
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bm—l C /em'—l
a b ¢ k
a b ¢ k
b ¢ Fom
a b ¢ R
where
— — _ac — 13
b”l_ b b’”_l ? ( 2 )
akm—L .
V’m =R— T . 3
/ / bm—l ( )
Thus the value of x. to be obtained in the back-substitution is
R )
xmzﬁl—)::_z%xmi-l . ( 4‘ )

If we regard the relation (2) as the linear transformation from p,..; to bu, its
fixed points «, § are the roots of the equation of the second order
Z—bz+ac=0 (5)
and the relation (2) can be expressed in the form
bn—a o ﬂ Om-1—a
bm_ﬁ —E bmfl'"‘@ ) <6)
If b*—4ac>0, (5) has two distinct real roots. If we put |a]>|B|20, we see
from (6) that ). converges to the positive value @, when m—=c. This fact shows

that the pivot b» in each stage of the forward-elimination tends to a steady positive
value. Hence, in this process, the errors due to the cancellation of figures in pivots
do not occur.

4. Error Propagation in the Forward-elimination

Now let & be the rounding error introduced on the right-hand side %; in the sth
stage of elimination. At the last stage of this process, this error grows to the
magnitude '

S n—i_q._ a ,,,__a__v.
(_l) . bi bi+1 bn—l & (7)
which can be shown by the relation (3).
As by=b=a+p, we obtain from (6)
bima (BN bima (Y
bi—p _<a> bi—8 —< >,

and, furthermore,

(8)
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Hence (7) becomes

1_<ﬁ>i
a n-i «

oyl o
which represents the fact that last £. has an error whose component due to ¢; is

given by the expression (9).
By (9), we see that, when 7 is large, the errors introduced in the way of the

forward-elimination effect a large influence on the last unknown x. if ’g-’>1.
a

a

This is the case II shown in Table 1. On the contrary, if £1 the error which

once appeared diminish immediately or do not grow in the subsequent stages.
These are the cases I and IIT in Table 1.

5. Error Propagation in the Back-substitution ,
Next let us examine the back-substitution. During this process, if an error §;
is introduced in the unknown yj, its effect on the unknown x:(i<j) is given by

S ( ¢ >,~_,- 1”<7€">£

(—1y=& —El s (10)
bi b 1_<£_>’

i+l bj—l

by virtue of the relations (4) and (8).
1) In the case '—avtél, the forward-elimination gives the correct values of £,,
a
so that from (4) we see that the main errors are due to the above effect. Hence

>1, (10) shows

if i{é 1, we obtain generally correct values of x:,while if —2—
«

that we obtain the erroneous values of the earlier unknows. These circum-
stances are shown by the cases I and III in Table 1 and 2.
2) 1In the case l£l> 1, the forward-elimination gives considerable errors on the
«a

values of ki, so that we must pay attention to them when we consider the
errors of the unknowns x: in view of the formula (4) of back-substitution. If k;
admits an error ¢; during the forward-elimination, it gives the error

;a a a
— 1yl L A
( ) bj bj+1 bm—-l ¢

)

measured by the unit of the right-hand side %,, in the m-th stage of elimination.
On the other hand, we obtain from (4)

ki ¢ ki'”._{_ 4 C_h@_...._{_(_l)n-ii 4 L-ki (12)

pe= Z: bi bi+1 EE‘FI bi+2 i bi+1 bn—l bﬂ ?
In view of (11), we see that the right hand side of (12) contains the error due to
¢; given by :
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. 7 8
Ei =g (/mamA
’ lm=z' bn_z
where
; ¢ C 4
= _*‘1 M
¢ ( ) bi bi+1 bm—'l
.a a a
===
“ ( ) bi bji-l bm—l
In view of the relation (8), we obtain after some calculations
/ ] ntl-i . i~j
(e (-8
E,= & 1; a 7 T (13)
S v
a a
When ¢ is small compared with 7, we obtain approximately
_ (ﬁ)’
~ a\ivi «
GEl—— ) g, 14
i < a> B—a (14)
This represents the effect of the error ¢; on the unknown y;. As |-% >1,|E;;| may
a

become large if ;>>7. But if the back-substitution advances, the number ; decreases,

- . . . . ["j

so that ;—j becomes to be negative finally, and in view of the factor <—£> R
«

| E;;| diminishes with the advancement of the process. For this reason, if we per-
form the back-substitution, we generally obtain the correct values for the earlier

unknowns. These circumstances are shown by the case II in Table 1 and 2.

6. Other Cases

Table 3.
Case .1 V-2 V1 V-2 Vi
(@, b, 0 (3, 4, 5) (3, 4, 5) 5, 4, 3) (5, 4, 3) Pivot of “, 3, 4)
ale 3/5 3/5 5/3 5/3 Case 1V, V 1
n 108 109 108 109 109
X 7.3886100 +03 | —5.1674815 +08 | 1.0000000 +00 | 9.9952240 —o1 [ p, 4.0000000 00 | 1.0000023 +00
X, —5.9090880 +-03 | 4.1339852 +08 | 1.0000000 -+00 | 1.0006368 +00 | b, 2.5000000 —01 | 9.9999828 —01
X 2.9650440 +02 | —2.0669923 407 |  1.0000000 +00 | 9.9994694 —O1 || p5 | —5.6000000 -+00 || 9.9999903 —o01
X, 3.3106492 +03 | —2.3150316 408 |  9.9999983 —OL | 9.9900920 —01 || p, 4.2678572 00 || 1.0000023 +00
| | I | I | | |
I | I | | | | |
l | | 1 | I
Xs3 9.8698509 —O01 | 9.1137673 402 | 1.0124134 +00 | 2.9025149 +02 | psy | 3.7500861 +00 || 9.9999960 — 01
Xs4 1.0097614 +00 | —6.8179827 402 |  1.0010882 400 | —3.6055605 +02 | pss | 9.1900000 —05 | 9.9999961 — 01
Xss 9.9999982 —OL | 1.0125908 400 | 9.7786007 ~O01 | 9.8893576 —OL || hgg | —1.6321690 -+05 | 1.0000007 +00
Xs6 9.9342001 —01 | 4.1067064 402 | 1.0295193 --00 | 6.0361107 +02 | pss | 4.0000919 400 || 9.9999991 —o1
i | | | | | I |
| | | | | | | |
| ! I J f | |
X105 1.0000000 +00 |  9.9840291 ~01 | —7.5055566 +03 | —1.7439803 -+08 || pyos| 3.5148074 400 || 9.9999952 —o1
X106 9.9999999 —01 | 1.0011227 +00 | —6.6923138 +02 | 2.0431570 -+08 | ;g ~2.6765930 —01 | 1.0000006 -+00
X107 9.9999999 —O1 |  1.0000601 +00 |  1.3405570 +04 | 1.8242464 07 || pyor|  6.0041395 -4-01 | 9.9999081 —o1
X108 1.0000000 +00 | 9.9927816 —O1 | —1.6754713 --04 | —3.6484947 08 || p1os| 3.7501724 400 | 9.9999956 —o1
X109 1.0005414 00 4.5606188 +08 || p1ge| 1.8370000 —04 | 1,0000005 +00
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In the preceding, we have considered the case b*—4ac>0. If this condition
fails, the numerically smallest eigenvalue of the coefficient malrix can take a
sufficiently small absolute value, and the condition number may become very large.
Yet the propagation of errors can be studied in view of the similar relations as
those used in the above consideration.
detailed proofs. The main results are shown in the general scheme given in Table 4.

Table 3 gives some numerical examples for the case b:—4ac<0.

To avoid complexity, we have omitted the

7. Conclusion

Finally, we shall give in Table 4 the main results over all the cases in a table
form. It represents the general behavior of the solution of (1) obtained by the
Gauss elimination method when 7 is large.

Table 4.
referred
o] L | Example
a [4 correct increasing - )
= > 3 ace
a <, | « ):l value tendency Case 1
5 a c correct correct .
2 —~dac= —_—< —_—t<
b2 —4ac=0 <1, t " ;zl value value Case 111
c . . rec .
e >1, =K1 increasing correct Case 1l
a v value
a _. : . .
- <1 c‘?:f‘fgt increasing Case IV
4 a . . X <
b*—4dac<0 —>1 increasing correct Case V
c value
2 1 generally Case VI
c correct value




