WEKO3
アイテム
Systematic Method for Determining the Number of Multiplications Required to Compute x<sup>m</sup> Where m is a Positive Integer
https://ipsj.ixsq.nii.ac.jp/records/59931
https://ipsj.ixsq.nii.ac.jp/records/599315a544417-ae03-44c8-82de-8ab8420994bc
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 1983 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | JInfP(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 1983-03-20 | |||||||
タイトル | ||||||||
タイトル | Systematic Method for Determining the Number of Multiplications Required to Compute x<sup>m</sup> Where m is a Positive Integer | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | Systematic Method for Determining the Number of Multiplications Required to Compute x<sup>m</sup>, Where m is a Positive Integer | |||||||
言語 | ||||||||
言語 | eng | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||
資源タイプ | journal article | |||||||
著者所属 | ||||||||
Department of Pure and Applied Sciences College of General Education University of Tokyo | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Department of Pure and Applied Sciences, College of General Education, University of Tokyo | ||||||||
著者名 |
Ichiro, Semba
× Ichiro, Semba
|
|||||||
著者名(英) |
Ichiro, Semba
× Ichiro, Semba
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | We consider the problem of determining the number of multiplications required to compute x^m where m is a positive integer. We propose a new systematic method (Euclid method) based on Euclid's algorithm. For a given positive integer n the Euclid method determines the number of multiplications required to compute x^m for every integer m 4≤m≤n successively. The Euclid method gives the minimum number of multiplications for m such that the number of 1's in the binary representation of m is equal to or less than 4. The time required to determine the number of multiplications for every integer m 4≤m≤n is shown to be bounded by cn^2 log_2 n where c is some constant. Computer tests have been done for n=1000 and they have shown that the Euclid method gives the minimum number of multiplications for m such that 4≤m≤622 and 624≤m≤1000. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | We consider the problem of determining the number of multiplications required to compute x^m, where m is a positive integer. We propose a new systematic method (Euclid method) based on Euclid's algorithm. For a given positive integer n, the Euclid method determines the number of multiplications required to compute x^m for every integer m, 4≤m≤n, successively. The Euclid method gives the minimum number of multiplications for m such that the number of 1's in the binary representation of m is equal to or less than 4. The time required to determine the number of multiplications for every integer m, 4≤m≤n, is shown to be bounded by cn^2 log_2 n, where c is some constant. Computer tests have been done for n=1000 and they have shown that the Euclid method gives the minimum number of multiplications for m such that 4≤m≤622 and 624≤m≤1000. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AA00700121 | |||||||
書誌情報 |
Journal of Information Processing 巻 6, 号 1, p. 31-33, 発行日 1983-03-20 |
|||||||
ISSN | ||||||||
収録物識別子タイプ | ISSN | |||||||
収録物識別子 | 1882-6652 | |||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |