Systematic Method for Determining the
Number of Multiplications Required to
Compute x™, Where m is a Positive Integer

ICHIRO SEMBA*

We consider the problem of determining the number of multiplications required to compute x™, where m is
a positive integer. We propose a new systematic method (Euclid method) based on Euclid’s algorithm. For a
given positive integer n, the Euclid method determines the number of multiplications required to compute x™
for every integer m, 4 <m< n, successively. The Euclid method gives the minimum number of multiplications for
m such that the number of 1’s in the binary representation of m is equal to or less than 4. The time required
to determine the number of multiplications for every integer m, 4<m<n, is shown to be bounded by cn? log; n,
where c is some constant. Computer tests have been done for n= 1000 and they have shown that the Euclid method
gives the minimum number of multiplications for m such that 4 <m <622 and 624 <m<1000.

1. Introduction

Several algorithms for computing x™ are known.
They are the binary method, the factor method and the
power tree method.

The binary method is based on a binary representa-
tion of m. If m is an even number, then we calculate
x™? and square it to obtain x™. If m is an odd number,
then we calculate x™~! and multiply it by x. Repeated
application of these rules gives the binary method.

The factor method is based on a factorization of m.
If m=pq, where p is the smallest prime factor of m and
g>1, then we calculate x? and then raise this quantity
to the gth power. If m is prime, then we calculate x™~!
and multiply it by x. Repeated application of these rules
gives the factor method.

The power tree method was proposed by Knuth
[1, §4.6.3, Ex 5].

In this paper, we propose a new systematic method,
Euclid method, based on Euclid’s algorithm and com-
pare the Euclid method with the above methods theoreti-
cally and experimentally.

The problem of computing x™ is easily reduced to ad-
dition, once we recall that x’x/ =x'*J. Thus, we define
an addition chain for m as follows.

An addition chain for m (of length r) is a sequence
of r+1 integers ay, a,, * * -, a, such that (i) ap =1, a; =2,
a,=m and (i) for each i, a;=a;+4, for some j<k<i.
Let I(m) be the smallest length of addition chains for m.

Note that the length of an addition chain for m is
equal to the number of multiplications required to
compute x™.
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2. Euclid Method

In this section, we establish the Euclid method based
on Euclid’s algorithm.

Suppose that the Euclid method is applied to m (4<
m<n). We denote by E(m) the length of the addition
chain for m obtained by applying the Euclid method
to m. The addition chain of length E(m) for m is called
E-addition chain for m.

We apply Euclid’s algorithm to n and some p, 2<
p<n-—1, and obtain the following sequence.

n=pq+p, ©O<p,<p),
P=pP191+p2 O<p.<py),
Pi-2=Pi-19i-1+P; (O0<p;<p;_,),

Pr-2=Pk-19x-1+Pc  (P=0).

We denote by E,(n) the length of an addition chain
for n constructed from the above sequence.

Four cases are considered.
Case 1. p=2and n=2g+p, (p,=0o0r1).

An addition chain for n, 1,2,2-2, -+, 2-q, 2q+p, =n,
can be constructed.

Thus, E,(n)=1+E(q)+e (e=0or 1).
Case 2. p=3and n=3q+p, (p,=0o0r 1 or 2).

An addition chain for n, 1,2,3,3-2, ---,3-¢q, 3¢+p, =
n, can be constructed.

Thus, Es(n)=2+E(g)+e (e=0 or 1).

We define p, =p. We distinguish the E-addition chain
based on whether or not the chain contains 3.
Case 3. p>3,p;>3(0<j<i)and 0<p,<3 (i<k). The

E-addition chain for p,_, contains 3.

Anadditionchainforn, 1,2,3,---,p; 1, ", Pi—1qi-1,
Pi-19i-1 +Pi=Pi-2, """ P, """, P4, P4+py=n, can be
constructed.

Thus, E,(n)=E(g)+ " +E(q;-1) +E(pi—)+i—1+e
(e=0orl).
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Cased. p>3,p;>3(0<j<i)and 0<p,;<3 (i<k). The
E-addition chain for p;_,; does not contain 3.
An addition chain forn, 1,2, -, pu_1s " s P 1qk—1»
Px—19x-1+Dx=Pix-2; " " "» P> ** "> P4, P4+p,=n, can be
constructed.
Thus, E,(n)=E(g)+ " +E(qk-1) +E(Pr-1) +k— 1.

Our Euclid method is to test every integer p, 2<p<
n—1, and finds p which makes E,(n) minimum. There-
fore, we have

E(n)= min
2<psn—1

We define E(1)=0, E(2)=1 and E(3)=2.

The algorithm being described in PASCAL-like
notation is given in Fig. 1. We explain the algorithm
briefly.

In Fig. 1, the function B(m) (2<m<n) is defined as
follows.

E(n) (n=4).

0 if the E-addition chain for m does not contain

1 if the E-addition chain for m contains 3,
B(m)=
3.

The variable min in Fig. 1 saves the minimum
values Ein) 2<j<p<n—1) such that the addition
chain of length min for n does not contain 3. The variable
min3 saves the minimum values Ei(n) 2<j<p<n—1)
such that the addition chain of length min3 for n
contains 3. Therefore, if min>min3, then we can
conclude B(n)=1. If min <min3, then we can conclude
B(n)=0. The variable x counts the number of mul-
tiplications.

1. begin
2. E(1):=0; EQ2):=1; B(2):=0; E(3):=2; B(3):=1;
3. for m:=4 to n do begin
4, min:=9999; min3:=9999;
5. for p:=2 to m—1 do begin
6. {Euclid’s algorithm}
7. nn:=m; pp:=p; qq:=nn div pp; rr:=nn mod pp;
8. x:=0; T -
9. while rr>0 do begin
10. x:=x+1;
11, if ((rr=1) or (rr=2) or (rr=3)) and (B(pp)=1) then
" begin - —
12. xx:=x+E(pp)+E(qq);
13. if xx<min3 then min3:=xx;
14. goto 1
15. end;
16. x:=x+E(qq):
17. nn:=pp; pp:=rr; qq:=nn div pp; rr:=nn mod pp
18. end; _" T
19. x:=x+E(pp)+E(qq);
20. if (B(pp)=0) and (x <min) then min:=x;
21. if (B(pp)=1) and (x<min3) then min3:=x;
22, 1:
23, end;
24, if min3<min then begin E(m):=min3; B(m):=1 end
25, else begin E(m):=min; B(m):=0 end
26. end
27. end.

Fig. 1 Euclid method.

1. SEmBA

Example. Assume that E(m) and B(m) (1<m<9) are
determined.

m 1 2 3 4 5 6 7 8 9
E(m) 0O 1 2 2 3 3 4 3 4
B(m) O I o0 1 1 1 0 1
We will try to determine E(10) and B(10).
p=2 10=2-54+0 E,(10)=1+E(5) min=4
p=3 10=3-3+1 E;(10)=2+EQ})+1 min3=35
=5
p=4 10=4-242 E,(10)=EQ)+EQ)+EQ)+2—1
4=2-240 =4
p=5 10=5-240 E (10)=EQ)+E(S)+1—1
=4 min3 =4
p=6 10=6-14+4 E(10)=E()+E(1)+E(Q)
6=4-1+2 +E(2)+3-1
4=2-2+0 =4
p=7 10=7-143 E;(10)=EQ)+E()+1
=5
p=8 10=8-1+2 EgI0)=E(1)+E@)+EQ)+2-1
8=2:4+0 =4

p=9 10=9-1+1 Ey(10)=E(1)+E9)+1

=5
Thus, we have E(10)=4. Since min=min3, it follows
that B(10)=1.

3. Theoretical Results

Let BM(n) be the length of the addition chain for n
generated by the binary method. Let FM(n) be the
length of the addition chain for n generated by the
factor method. We can easily obtain the following

property.

Property 1. Let n>2.
(1) E(m)<BM(n)
2) Em<FM(n)

Let v(n) be the number of 1’s in the binary representa-
tion of n.

Theorem 1. For n such that v(n) <4,
E(n)=I(n).

Proof. For n such that v(r) <3, E(n) is equal to I(n),
because the equation BM(n)=I(n) is known and E(n) <
BM(n).

Let n=2°+2°4+2°429 where a>b>c>d. For n
such that w(n) =4, Knuth [1,449] proved that /(n)>a +3,
except in four cases for which /(2° +2°+2°+2%)=qa+2.

Case 1. a—b=c—d
Case2. a—b=c—d+1
Case 3. a—b=3, c—d=1

Case 4. a—b=5b—c=c—d=1

By the fact that BM(2°+2°+2°+2%) =a+3 and E(n)<
BM(n), it remains for us to prove that the Euclid
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method detects an addition chain of length a+2 for
each case.
Case 1. 29420420 424={(2°74 4 20)2~4
+(2°79 42932
Thus, we have Em)=d+b—d+1+c—d+1
=b+c—d+2
=a+2
Case 2. 2u+2b+20+2d={(2c—d+1 +20)2b—d
+(2c—d+20)}2d
2c—d+x+20=(2c—d+20)+2c—d
2c—d+20=(2c—d)+20

2c—d=2025—d

Thus, we have Em)=d+b—d+1+1+1+c~d
=b+c—d+3
=a+2

Case 3. 2°+204+2°429=3(2b*1 4 2 4 29)
Thus, we have E(n)=2+b+1+2
=b+5
=a+2
Case d. 2742°+2°420=3(20%1 42943 4 20+2 4 99)
The inside of the parenthesis reduces to Case 1.
Thus, we have E(n)=2+d+5+2
=d+9
=a+2

This completes the proof.
Theorem 2.

The time required to determine the number of mul-
tiplications for m (4<m<n) is bounded by cn? log, n,

where ¢ is some constant.

Proof. If we apply Euclid’s algorithm to m and
some p, 2<p<m-1, then the algorithm requires time
that is bounded by some constant times log, m. Thus,
the time required to determine E(m) is bounded by some
constant times mlog, m. Since Sm=amlog, m=0
(n? log, n), we obtain this theorem.

4. Experimental Results

Computer tests have been done for m < 1000. In the
power tree method, the following 40 values are dif-
ferent from /(m).

77 154 233 293 308 319 359 367 377 382
423 457 466 551 553 559 571 573 586 616
617 619 623 638 699 713 717 718 734 754
764 813 841 846 849 869 879 905 914 932
In the Euclid method, only one value 623 is different
from /(623). We have taken the values of I(m) from
Knuth [1,458].
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