WEKO3
アイテム
An O(n(n<sub>2</sub>/(p)+log p)) Parallel Algorithm to Compute the All Pairs Shortest Paths and the Transitive Closure
https://ipsj.ixsq.nii.ac.jp/records/59778
https://ipsj.ixsq.nii.ac.jp/records/59778016da952-2c59-458b-b6af-2f08f36c3f0e
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 1989 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | JInfP(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 1989-08-25 | |||||||
タイトル | ||||||||
タイトル | An O(n(n<sub>2</sub>/(p)+log p)) Parallel Algorithm to Compute the All Pairs Shortest Paths and the Transitive Closure | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | An O(n(n<sub>2</sub>/(p)+log p)) Parallel Algorithm to Compute the All Pairs Shortest Paths and the Transitive Closure | |||||||
言語 | ||||||||
言語 | eng | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||
資源タイプ | journal article | |||||||
著者所属 | ||||||||
Department of Computer Science Ibaraki University | ||||||||
著者所属 | ||||||||
Department of Computer Science Ibaraki University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Department of Computer Science, Ibaraki University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Department of Computer Science, Ibaraki University | ||||||||
著者名 |
Ma, Jun
× Ma, Jun
|
|||||||
著者名(英) |
Ma, Jun
× Ma, Jun
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | Multiprocessors with shared memory structured as a complete binary tree are considered for use with a parallel algorithm to compute the all pairs shortest paths and the reflexive transitive closure in a weighted directed graph. The time complexity of the parallel algorithm is O(n(n^2/(p)+logp)) where n is the number of vertices in the graph and p(≤n^2) is the number of processors used. The Ada language is used to implement the algorithm. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | Multiprocessors with shared memory structured as a complete binary tree are considered for use with a parallel algorithm to compute the all pairs shortest paths and the reflexive transitive closure in a weighted directed graph. The time complexity of the parallel algorithm is O(n(n^2/(p)+logp)), where n is the number of vertices in the graph and p(≤n^2) is the number of processors used. The Ada language is used to implement the algorithm. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AA00700121 | |||||||
書誌情報 |
Journal of Information Processing 巻 12, 号 2, p. 119-124, 発行日 1989-08-25 |
|||||||
ISSN | ||||||||
収録物識別子タイプ | ISSN | |||||||
収録物識別子 | 1882-6652 | |||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |