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Multiprocessors with shared memory structured as a complete binary tree are considered for use with a
parallel algorithm to compute the all pairs shortest paths and the reflexive transitive closure in a weighted
directed graph. The time complexity of the parallel algorithm is O(n(n*/ p+log p)), where n is the number of vertices
in the graph and p(=n?) is the number of processors used. The Ada language is used to implement the algorithm.

1. Basics

A weighted directed graph G=(V, E, COST) is an or-
dered triple of the set ¥ of n vertices numbered from 0
to n—1, the set E of edges and a function COST that
maps into real numbers. Edge (i, j) of E is said to be
directed from vertex i to j. The function COST is usu-
ally given by a matrix COST(0...n—1,0...n-1),
where COST (i, j) is the weight of the edge from vertex i
to j. Here we let COST(/, i)=0. for i=0, ..., n—1,
and COST (i, j)= o if there is no edge from i to j. We
define the cost of the shortest path from i/ tojin G as the
minimum of the sums of the weights of the edges over
the paths from i to j.

If A is the adjacency matrix of a graph G, the matrix
A* with the property that A*(i, j)=1 if there is a path
of length =0 from / to j and 0 otherwise is the reflexive
transitive closure matrix of G.

Let R be an equivalence relation of a set A and, for
each ae A, let [a], called an equivalence class of A4, be
the set of elements to which a is related:

[a]={x: (a, x)e R}

The collection of equivalence classes of A, denoted by
A/R, forms a partition on A and is called the quotient
of A by R.

2. Introduction

Recent progresses in hardware technology have caus-
ed the appearance of parallel computers with a large
number of processors. Whether such machines are
general or special purpose, a natural way is needed to
map problems onto them. Only in this way will it be
possible for applications to rapidly find their way into
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execution in this new computing environment.

In this paper we discuss two problems, the problem
to compute shortest paths between all pairs of vertices
in a directed weighted graph and the problem to
calculate the reflexive transitive closure matrix of a
directed graph.

Let us first discuss the problem to compute all pairs
shortest paths. This problem is important in graph
theory and has many practical applications. In a com-
puter communication network a knowledge of the
shortest paths between every two processing nodes is
essential to determine dynamically the optimal feasible
route from one processor to the other in order to
minimize the communication delay. The input to this
problem is a weighted directed graph G=(V, E, COST).
The output is an array A(j, j) containing the cost of the
shortest path from / to j, for i, j=0,..., n—1.

The parallel algorithms to compute all pairs shortest
paths have been previously investigated [2], [10]. These
algorithms were designed for VLSI implementation.
Although the time complexity of these algorithms is
very good, one with time O(n log n) and the other with
time O(n), n* processors are needed in each of the two
algorithms. We can also use the parallel algorithms for
solving the single source shortest path problem [4], [7]
to compute all pairs shortest paths in O(n log n) time,
but in this approach n? processors are necessary. The
assumption that there are n? processors is too strong to
implement these algorithms in practice and the parallel
architectures are too special. So we want to find parallel
algorithms which are independent of the size n of input
graph and have high efficiency. We use the Ada
language to implement our algorithms and measure
time complexity assuming that a unit operation in Ada
is done in O(1) time, in very much the same way as se-
quential algorithms are analyzed using PASCAL. The
architecture on which the algorithms are executed is a
general purpose parallel machine described in the



120

Job

Fig. 1 A parallel architecture with a binary tree communication
network (p=10).

following.

Shared memory multiprocessor systems are becoming
increasingly popular as general purpose machines [3].
The advantages offered by shared memory multiproces-
sors include ease of programming and high perfor-
mance which result from the tight coupling between pro-
cessors and memories. In a shared memory
multiprocessor system the processors share a number of
global variables stored in the common memory. These
variables also enable the processors to communicate
efficiently through the shared memory. In the connec-
tion of processors the complete binary tree is considered
as one of general networks [8]. A possible layout of
such a binary processor tree with 10 processors is shown
in Fig. 1. For it we have three assumptions:

1. Each processor in the binary processor tree can
operate independently, has the same computing power
and is labelled with a number shown in Fig. 1.

2. These processors are sharing a common memory.

3. Any processor in the binary tree can send and col-
lect messages to and from its children processors (if it
has) via the complete binary tree network.

On this parallel architecture let us restudy the prob-
lem of computing the all pairs shortest paths in a
weighted directed graph. Because the multitasking con-
structs of the Ada programming language [1] now pro-
vide source-level facilities which can be used to imple-
ment algorithms incorporating parallelism and thus will
provide a means of porting parallel algorithm over
various parallel architectures, let us use it to discribe
our parallel algorithm, and to execute our algorithms
on the parallel machine mentioned above. The basic
assumption on the architecture is that the same location
of the shared memory can be accessed by any number
of processors concurrently for reading and by one pro-
cessor for writing at a time. Also, along the paths of the
tree architecture, two child tasks can be generated in
O(1)time. Let us first study a sequential algorithm to
compute all pairs shortest paths.

3. The Sequential Algorithm

The sequential algorithm that we choose to
parallelize is the best known all pairs shortest path
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algorithm [Floyd, 1962]. Let us restate it briefly.
Floyd’s sequential algorithm to solve the all pairs
shortest path problem is as follows.

Define A*(i, j), 0<i, j, k<n—1, to be the cost of the
shortest path from i to j going through no intermediate
vertex of index greater than k. Then A"~'(i, j) will be
the cost of the shortest path from i to j in G since G con-
tains no vertex with the index greater than n—1. A~'(j,
J) is just COST(, j). The basic idea of Floyd is to suc-
cessively generate the matrices 4%, A', . . ., A"\, If we
have already generated A*~', then we can generate A*
by the formulas 3.1 or 3.2. We suppose G has no cycle
with negative length containing vertex k here.

AY(Q, j)=min {4*7'G, j), A*7'G, k) + Ak, )Y,
O<sk=n-—1 3.1
A~'(, j)=COST(, j) 3.2

Now let us give Floyd’s algorithm in an Ada pro-
cedure.
type adjacencymatrix is array (0...n—1, 0. ..
n—1) of integer;
1 Procedure allpairs (cost: in adjacencymatrix;
A: out adjacencymatrix;
n: integer);

2 begin

3 copy A from COST;

4 forkin0...n—1loop

5 foriin0...n—1 loop

6 forjin0...n—11loop

7 A(i, j):=minimum
{AG, j), AG, k) + A, j)};

8 end loop;

9 end loop;

10 end loop;

11 end;

The time complexity of Floyd’s algorithm is clearly
o).

4. The Parallel Algorithm

Let us develop a parallel algorithm based on Floyd’s
algorithm on the parallel machine shown in Fig. 1. We
use p(p=n?) to express the number of processors used
in the computer system. In Floyd’s algorithm it seems
the operations between line 5 to line 9 can be im-
plemented in parallel by multiprocessors. But if this is
done by many processors working on the shared array
A concurrently and asynchronously, A* is not generated
by the formula

A, j)=min {A*7'G, j), A*'G, k) +A*'(k, j)}
O<k=n—1.

In fact, A* is generated by one of the following four ran-
domly chosen formulas

AXG, j)=min {4*7'G, j), A*7'G, k)+A* (&, j)}
O<k=n-—1, 1.
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AX(J, jy=min {4*7'G, j), A*7'G, k) +AKk, )}

O<k<n-—-1, 2.
AKX, j)=min {4*"'(, j), A"(i, ky+A* Yk, j)}

O<k=n—1, 3.
A, j)=min {A*'(i, j), A*G, k) + A%k, j)}

O<k=n—1, 4,

since A%(i,j) (i,j=1,...,n) are not updated all at
once.

Now let us first prove an important fact that the
generation A from A*~' are independent of which

operation of the above four is used.

Theorem 1. In the process of generating A* from A*~!
of Floyd’s algorithm, whichever operation of the above
four is used the result is the same.

Proof. We can simply prove this theorem by proving
AR, k)=A*"'(i, k), and A*(k, j)=A""'(k, j).

Because we have supposed that there is no cycle with
negative length at the beginning and A~'(k, £)=0, for
any k, 0<k=<n—1, A*k, k)=0 is not changed in the
generation A* from A*~!, So

AX(i, k)=min {A*"'G, k), A¥7'G, ) +A*\(k, )}
=min {4*"'(i, k), A*7'(i, k)+0}
=A%\, k).

For the same reason we have A%k, j)=A*"'(k, j).

According to theorem 1 in the generation of A* from
A*~! we can calculate the elements of A in any order. So
we want to find a mutual disjoint partition {4;} of the
elements of 4, i=1, ..., p and find a method to let p
processors work on the p subsets separately.

Let us map an array index (/, j) to a number x by the
formula 4.1.

x=in+j. 0<i,j<sn—1. 4.1
It is clear that this is a one to one mapping from n? array
indices to the set S={0,...,n*—1}. It is also very
easy to decompose a number belonging to S into an ar-
ray index (i, j).

It is well known fact that a=b (mod p) is a equiv-
alence relation on set {0,..., n*—1} and [0}],.. .,
[p—1] are the quotient set of {0,...,n*—1} [11].
Now we let the processor with label i, (0O<isp—1),
compute the elements of A whose array indices are map-
ped by formula 4.1 into [i]. Our algorithm has two
steps. In step 1, the main program creates a process on
the processor at the position of the root of the complete
binary tree and sends 1 to the process. When a process
on a processor in the binary tree receives a number x ex-
pressing indices (i, j) of array A, if it has a left child pro-
cessor it creates a process on its left child processor and
sends 2x to the process and if it has a right child pro-
cessor it creates a process on its right child processor
and sends 2x+1 to the process. It is clear that the pro-

cessor with label i (0<i<p—1) receives a number of
i+ 1. Hereafter we shall not distinguish between process
and processor.

In step 2, the main program sends k to the process at
the root of the binary tree. Each process waits to receive
k from the binary tree. When a process receives k, if it
has a left child process it sends k to its left child pro-
cessor and if it has a right child process it sends & to its
right child process. After that it calculates the elements
of array A whose indices are mapped into [x— 1] by pro-
cedure ‘‘compute’’. This is like a process with label x
undertake the additional calculations at the
hypothetical nodes x+p, x+2p, . ... After n itera-
tions of the loop of the main program like the sequen-
tial algorithm of Floyd, A"~! is generated in 4 and A(,
J) is the cost of the shortest path from vertex i to vertex
J. Because the principle of our algorithm is the same as
Floyd’s, the correctness of our algorithm is obvious.
Our algorithm is given as follows in an abstract form:

main program

begin

—STEP 1

1 start p processes in form of binary tree and send 1 to
the process at the root of binary tree;

2 wait until the complete binary tree is formed and
each processor receives its number as labels;

—STEP 2

3 forkinO...n—1loop

4 send k to the process at the root of binary tree;

5 wait until k-th iteration is completed;

6 end loop;

end main;

process: (to be implemented by task in Ada)
X, i, j, t: integer;
bound: integer: =n?;
procedure compute is
begin
t.=x—1
while 1 <bound loop
decompose ¢ to an array index (i, j);
A(, j):=min {A@, j), AU, kH+AKk, )};
t.=t+p;
end loop;
end
begin
—STEP 1
1 wait to get a number x expressing an array index
from binary tree network;
if 2x+1=<p then {has two children}
create a left child process and send 2x to it;
create a right child process and send 2x+1 to it;
wait until left and right subtrees are formed;
elsif 2x<p then {has left child only}
create a left child process and send 2x to it;
wait until left subtree is fromed;
end if;
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10 report to parent that this job is done;

—STEP 2

11 repeat loop » times

12 wait to get k in binary tree network;
13 if 2x+1=<p then {has two children}

14 send k to its left child process;

15 send k to its right child process;

16 compute;

17 wait until jobs are done in left and right sub-
trees;

18 elsif 2x<p then {has left child}

19 send k to its left child process;

20 compute;

21 wait until jobs are done in left subtree;

22 else compute;

23 end if;

24 report to parent that this job is done;

25 end loop;

end process;
Let us analyze the complexity of our algorithm.

Definition. The time complexity of a parallel
algorithm is the time that passes from the first processor
starts operating until the last one ends. Elementary
operations are assumed to take one time unit, including
process creation.

Theorem 2. On the parallel architecture shown in Fig.
1, if the number of processors used is p(p < n?), the time
complexity of our algorithm is O(n(n*/ p +log p)).

Proof. Since the height of the binary tree is [logp]
+1[6], the time for step 1 to create processes in the
binary tree form is O(log p) in step 1.

Since the number of iterations of the loop between
line 3 and line 6 in step 2 of main program is n, the
number of iterations of the loop between line 11 and
line 25 in the step 2 of processor is chosen to be n. It is
clear that for any i(0<i<p—1), |[i]| < [#*/p] . So the
number of iterations of the loop in procedure ‘‘com-
pute”’ is less than or equal to [#%/p] . Adding the time
for passing k to the processes at the leaves of the binary
tree, the time complexity of our algorithm is
O(n(n*/ p+log p)).

Corollary. In the multiprocessor system shown in Fig.
1, if the number of processors used is O(n), the time
complexity of our algorithm is O(n?). If the number of
processors used is O(n*/log n), the time complexity of
our algorithm is O(n log n).

Note 1. In the analysis of the time complexity of our
algorithm, we ignore the time of the input of COST, co-
pying A from COST and the output of array 4.

Note 2. The O(log p) time is necessary for synchroniz-
ing p processors for each iteration with each k.
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The second problem to calculate the reflexive tran-
sitive closure matrix is that of determining for every
pair of vertices i, j in G the existence of a path from i to
J- For this problem an algorithm was given by Warshall
[12]. The input to Warshall’s algorithm is a boolean ar-
ray A with the property A(i, j)=true if pair (i, j) is an
edge of G and A(i, i)=true, for i=0,. .., n—1. The
idea of Warshall was also to successively generate the
matrices A°, A', . .., A""'. If we change the line 7 of
Floyd’s algorithm as:

AL j):=ATG,J) or (A*TIG, )
and A*7'(k, /), 4.2

and A~' is the input array, the changed Floyd’s
algorithm becomes Warshall’s algorithm. Since the
structure of Warshall’s algorithm is much the same as
Floyd’s, we have a theorem similar to theorem 1 to
parallelize Warshall’s algorithm and the resulting
parallel algorithm has the same time complexity of
O(n(n*/p+log p)) with p processors. The details are
left with the reader.

§5. Conclusion

In this paper multiprocessors with shared memory
structured as a complete binary tree are considered for
use with a parallel algorithm to compute the all pairs
shortest paths and the reflexive transitive closure of a
weighted directed graph. Comparing our algorithms
with the algorithms in [2], [10], the parallel architecture
used in our algorithm is more general and our parallel
algorithm is simpler conceptually. Because the number
of processors used in our algorithm is independent of n,
the size of input graph, our algorithm can be used to
compute the all pairs shortest paths and reflexive tran-
sitive closure matrix on large graphs with an available
number of processors.

There are very many parallel computational models
proposed in the world. Depending on models on which
a parallel algorithm is implemented, its time complexity
varies. Based on theorem 1 it is easy to implement
Floyd’s algorithm on an SIMD parallel computer with
CREW shared memory with n*/p time where SIMD
and CREW stand for ‘‘single instruction stream multi-
ple data stream’’ and ‘‘concurrent read and exclusive
write’’. However, most of these models are not
available easily on real computers. On the other hand,
Ada is easily available and becoming important as a
language for describing parallel algorithms. Thus we
adopted Ada as a language for our algorithm and also
as an environment in which we measure time complexi-
ty. We stress that the tree topology is needed to realize
the time complexity of our Ada program. Note that a
similar technique of synchronization can be used for
higher-dimensional arrays. In appendix 4 we give an im-
plementation of our algorithm to solve the two prob-
lems over the binary tree parallel machine in Ada.
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Defense,

Appendix A

with text__io; use text__io;
procedure Floyd__Warshall is
n, p: integer;—the size of graph and processors
transitive: boolean;—transitive closure
package int__io is mew integer__io (integer); use
int__io;
package bool__io is new enumeration__io (boolean);
use bool__io;
begin
put (‘‘input p and n please’’); new__line;
put (‘‘if for transitive closure input true else false
please’’);
get (p); get (n); get (transitive);
declare
A:array (0...n—1,0...n—1) of integer;
bound: integer: =nxn;
procedure output is
begin
new__line;
foriin0...n—1 loop
forjin0...n—1loop
put (A(, j));
end loop;
new__line;
end loop;

end;
begin
put (‘‘input 4 please”’);
foriin0...n—1loop
forjin0...n—1loop
get (4G, j));
end loop;
end loop;

declare—declaration of process and related objects
task type process is—specification of process
entry receive (num: in integer);
entry wait;
end;
type point is access process;
subtype sub__process is process;
process__point: point;—pointer to process
task body process is—definition of process
i, x, j, k, t, count: integer;
left__point, right__point: point;
procedure compute is
begin
t:=x—1;
while 1 <bound loop
Jj:=tmod n; i:=t/n;
if transitive then
if A(i, j)=0 then A(i, j):=A(, k)*A(k, j);
else
if A(i, j)>A(, k)+A(k,j) then
A(, j):=AG, k) + Ak, j);
end if;
end if;
t.=t+p;
end loop;
end compute;
begin
—step 1
accept receive (num: in integer) do
X:=num;
end receive;
if 2+x+1<p then
left__point: =new sub__process;
left__point. receive (2«x);
right__point: =new sub__process;
right__point. receive (2¢x+1);
left__point. wait; right__point. wait;
elsif 2+x<p then
left__point: =new sub__process;
left__point.receive (2+x);
left__point.wait;
end if;
accept wait;
—step 2
forcountin 0. .. n—1 loop
accept receive (num: in integer) do
k:=num;
end receive;
if 2+#x+1<p then
left__point. receive (k);
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right__point. receive (k);
compute;
left__point. wait; right__point. wait;
elsif 2+x<p then
left__point. receive (k);
compute;
left__point. wait;
else compute;
end if;
accept wait;
end loop;
end process;
begin—main program
—create binary tree
process__point: =new process;
process__point. receive (1);
process__point. wait;
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—iteration by k
forkin0...n—1loop
put (‘‘iteration’’); put (k); new__line;
process__point. receive (k);
process__point. wait;
end loop;
end;
if transitive then
put (“THE REFLEXIVE TRANSITIVE
CLOSURE IS”);
else
put (“THE COST OF SHORTEST PATH
FROM I TO J IS”);
end if;
output;
end;
end Floyd__Warshall;



