WEKO3
アイテム
Numerical Behavior of Mixed Precision Iterative Refinement Using the BiCGSTAB Method
https://ipsj.ixsq.nii.ac.jp/records/231141
https://ipsj.ixsq.nii.ac.jp/records/23114171872a38-47a4-47a4-ad54-8baa1c8083ff
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]()
2025年11月29日からダウンロード可能です。
|
Copyright (c) 2023 by the Information Processing Society of Japan
|
|
非会員:¥0, IPSJ:学会員:¥0, ARC:会員:¥0, OS:会員:¥0, HPC:会員:¥0, PRO:会員:¥0, DLIB:会員:¥0 |
Item type | Trans(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2023-11-29 | |||||||||||
タイトル | ||||||||||||
タイトル | Numerical Behavior of Mixed Precision Iterative Refinement Using the BiCGSTAB Method | |||||||||||
タイトル | ||||||||||||
言語 | en | |||||||||||
タイトル | Numerical Behavior of Mixed Precision Iterative Refinement Using the BiCGSTAB Method | |||||||||||
言語 | ||||||||||||
言語 | eng | |||||||||||
キーワード | ||||||||||||
主題Scheme | Other | |||||||||||
主題 | sparse linear solver, iterative refinement, low precision computing, mixed precision algorithm, BiCGSTAB method | |||||||||||
資源タイプ | ||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||
資源タイプ | journal article | |||||||||||
著者所属 | ||||||||||||
Graduate School of Information Science and Technology, Hokkaido University | ||||||||||||
著者所属 | ||||||||||||
Information Initiative Center, Hokkaido University | ||||||||||||
著者所属 | ||||||||||||
Information Initiative Center, Hokkaido University | ||||||||||||
著者所属(英) | ||||||||||||
en | ||||||||||||
Graduate School of Information Science and Technology, Hokkaido University | ||||||||||||
著者所属(英) | ||||||||||||
en | ||||||||||||
Information Initiative Center, Hokkaido University | ||||||||||||
著者所属(英) | ||||||||||||
en | ||||||||||||
Information Initiative Center, Hokkaido University | ||||||||||||
著者名 |
Yingqi, Zhao
× Yingqi, Zhao
× Takeshi, Fukaya
× Takeshi, Iwashita
|
|||||||||||
著者名(英) |
Yingqi, Zhao
× Yingqi, Zhao
× Takeshi, Fukaya
× Takeshi, Iwashita
|
|||||||||||
論文抄録 | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | Mixed precision numerical methods using low precision computing have attracted much attention under recent computational hardware trends. In this research, we focus on solving large, sparse, and non-symmetric linear systems, and consider developing a numerical method based on a mixed precision variant of the iterative refinement scheme (MP-IR), in which we can exploit low precision computing and provide a computed solution with the same accuracy as that obtained by conventional methods without low precision computing. We employ the BiCGSTAB solver with FP32 as an inner solver of MP-IR and investigate its numerical behavior through numerical experiments. From the analyses on the obtained results including a comparison with MP-IR using GMRES(m), which is also known as MP-GMRES(m) and has been widely studied, the potential of MP-IR using BiCGSTAB has been confirmed. Together with other obtained results, this paper provides insights that are helpful in developing an efficient mixed precision linear solver for practical applications. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.31(2023) (online) ------------------------------ |
|||||||||||
論文抄録(英) | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | Mixed precision numerical methods using low precision computing have attracted much attention under recent computational hardware trends. In this research, we focus on solving large, sparse, and non-symmetric linear systems, and consider developing a numerical method based on a mixed precision variant of the iterative refinement scheme (MP-IR), in which we can exploit low precision computing and provide a computed solution with the same accuracy as that obtained by conventional methods without low precision computing. We employ the BiCGSTAB solver with FP32 as an inner solver of MP-IR and investigate its numerical behavior through numerical experiments. From the analyses on the obtained results including a comparison with MP-IR using GMRES(m), which is also known as MP-GMRES(m) and has been widely studied, the potential of MP-IR using BiCGSTAB has been confirmed. Together with other obtained results, this paper provides insights that are helpful in developing an efficient mixed precision linear solver for practical applications. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.31(2023) (online) ------------------------------ |
|||||||||||
書誌レコードID | ||||||||||||
収録物識別子タイプ | NCID | |||||||||||
収録物識別子 | AA11833852 | |||||||||||
書誌情報 |
情報処理学会論文誌コンピューティングシステム(ACS) 巻 16, 号 2, 発行日 2023-11-29 |
|||||||||||
ISSN | ||||||||||||
収録物識別子タイプ | ISSN | |||||||||||
収録物識別子 | 1882-7829 | |||||||||||
出版者 | ||||||||||||
言語 | ja | |||||||||||
出版者 | 情報処理学会 |