ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. コンピューティングシステム(ACS)
  3. Vol.16
  4. No.2

Numerical Behavior of Mixed Precision Iterative Refinement Using the BiCGSTAB Method

https://ipsj.ixsq.nii.ac.jp/records/231141
https://ipsj.ixsq.nii.ac.jp/records/231141
71872a38-47a4-47a4-ad54-8baa1c8083ff
名前 / ファイル ライセンス アクション
IPSJ-TACS1602002.pdf IPSJ-TACS1602002.pdf (797.1 kB)
 2025年11月29日からダウンロード可能です。
Copyright (c) 2023 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, ARC:会員:¥0, OS:会員:¥0, HPC:会員:¥0, PRO:会員:¥0, DLIB:会員:¥0
Item type Trans(1)
公開日 2023-11-29
タイトル
タイトル Numerical Behavior of Mixed Precision Iterative Refinement Using the BiCGSTAB Method
タイトル
言語 en
タイトル Numerical Behavior of Mixed Precision Iterative Refinement Using the BiCGSTAB Method
言語
言語 eng
キーワード
主題Scheme Other
主題 sparse linear solver, iterative refinement, low precision computing, mixed precision algorithm, BiCGSTAB method
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Graduate School of Information Science and Technology, Hokkaido University
著者所属
Information Initiative Center, Hokkaido University
著者所属
Information Initiative Center, Hokkaido University
著者所属(英)
en
Graduate School of Information Science and Technology, Hokkaido University
著者所属(英)
en
Information Initiative Center, Hokkaido University
著者所属(英)
en
Information Initiative Center, Hokkaido University
著者名 Yingqi, Zhao

× Yingqi, Zhao

Yingqi, Zhao

Search repository
Takeshi, Fukaya

× Takeshi, Fukaya

Takeshi, Fukaya

Search repository
Takeshi, Iwashita

× Takeshi, Iwashita

Takeshi, Iwashita

Search repository
著者名(英) Yingqi, Zhao

× Yingqi, Zhao

en Yingqi, Zhao

Search repository
Takeshi, Fukaya

× Takeshi, Fukaya

en Takeshi, Fukaya

Search repository
Takeshi, Iwashita

× Takeshi, Iwashita

en Takeshi, Iwashita

Search repository
論文抄録
内容記述タイプ Other
内容記述 Mixed precision numerical methods using low precision computing have attracted much attention under recent computational hardware trends. In this research, we focus on solving large, sparse, and non-symmetric linear systems, and consider developing a numerical method based on a mixed precision variant of the iterative refinement scheme (MP-IR), in which we can exploit low precision computing and provide a computed solution with the same accuracy as that obtained by conventional methods without low precision computing. We employ the BiCGSTAB solver with FP32 as an inner solver of MP-IR and investigate its numerical behavior through numerical experiments. From the analyses on the obtained results including a comparison with MP-IR using GMRES(m), which is also known as MP-GMRES(m) and has been widely studied, the potential of MP-IR using BiCGSTAB has been confirmed. Together with other obtained results, this paper provides insights that are helpful in developing an efficient mixed precision linear solver for practical applications.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.31(2023) (online)
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Mixed precision numerical methods using low precision computing have attracted much attention under recent computational hardware trends. In this research, we focus on solving large, sparse, and non-symmetric linear systems, and consider developing a numerical method based on a mixed precision variant of the iterative refinement scheme (MP-IR), in which we can exploit low precision computing and provide a computed solution with the same accuracy as that obtained by conventional methods without low precision computing. We employ the BiCGSTAB solver with FP32 as an inner solver of MP-IR and investigate its numerical behavior through numerical experiments. From the analyses on the obtained results including a comparison with MP-IR using GMRES(m), which is also known as MP-GMRES(m) and has been widely studied, the potential of MP-IR using BiCGSTAB has been confirmed. Together with other obtained results, this paper provides insights that are helpful in developing an efficient mixed precision linear solver for practical applications.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.31(2023) (online)
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11833852
書誌情報 情報処理学会論文誌コンピューティングシステム(ACS)

巻 16, 号 2, 発行日 2023-11-29
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7829
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 10:52:18.154400
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3