WEKO3
-
RootNode
アイテム
双対空間によるRing-LWE問題の脆弱性解析
https://ipsj.ixsq.nii.ac.jp/records/224723
https://ipsj.ixsq.nii.ac.jp/records/22472328a0275c-bcc5-4ee3-9a0a-2409a06e6715
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2023 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | SIG Technical Reports(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2023-02-27 | |||||||||||
タイトル | ||||||||||||
タイトル | 双対空間によるRing-LWE問題の脆弱性解析 | |||||||||||
タイトル | ||||||||||||
言語 | en | |||||||||||
タイトル | Vulnerability Analysis of Ring-LWE Problem by Dual Spaces | |||||||||||
言語 | ||||||||||||
言語 | jpn | |||||||||||
キーワード | ||||||||||||
主題Scheme | Other | |||||||||||
主題 | 耐量子計算機暗号 | |||||||||||
資源タイプ | ||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_18gh | |||||||||||
資源タイプ | technical report | |||||||||||
著者所属 | ||||||||||||
大阪大学 | ||||||||||||
著者所属 | ||||||||||||
大阪大学 | ||||||||||||
著者所属 | ||||||||||||
大阪大学/北陸先端科学技術大学院大学 | ||||||||||||
著者所属(英) | ||||||||||||
en | ||||||||||||
Osaka University | ||||||||||||
著者所属(英) | ||||||||||||
en | ||||||||||||
Osaka University | ||||||||||||
著者所属(英) | ||||||||||||
en | ||||||||||||
Osaka University / Japan Advanced Institute of Science and Technology | ||||||||||||
著者名 |
高橋, 朋伽
× 高橋, 朋伽
× 奥村, 信也
× 宮地, 充子
|
|||||||||||
論文抄録 | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | 格子暗号の代表的な安全性仮定の 1 つに,法 q の代数体 K の整数環 Rq=R/qR 上で定義される Ring Learning with Errors (Ring-LWE) 問題がある.Ring-LWE 問題に対する攻撃手法として,素イデアル上のエラー分布の偏りを突いた Any-residue-degree χ2-attack (ARD χ2-attack) が知られている.エラー分布は代数体Kによって異なるので,ARD χ2-attack に対する代数体ごとの安全性解析が必要であった.本研究では整数環の双対空間 R∨の代数構造を明らかにすることで,代数体の違いによる Ring-LWE 問題の脆弱性を評価する.双対空間による解析は実験結果を反映しており,代数構造による解析が ARDχ2-attack に対しても有効であることが確認された. | |||||||||||
論文抄録(英) | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | Ring Learning with Errors (Ring-LWE) problem is one of the most popular security assumptions in lattice-based cryptography which is defined over an integer ring of integer Rq = R/qR of a number field K of modulus q. A well-known attack on the Ring-LWE problem is the Any-residue-degree χ2-attack (ARD χ2-attack), which exploits the bias of the error distribution on prime ideals. Since the error distribution depends on the number field K, a security analysis of ARD χ2-attack for each number field was needed. In this study, we clarify the algebraic structure of the dual space R∨ of the ring of integers and verify the vulnerability of the Ring-LWE problem due to differences in the number field. The analysis by the dual space reflects the experimental results, and it is confirmed that the analysis by the algebraic structure is effective against ARD χ2-attack. | |||||||||||
書誌レコードID | ||||||||||||
収録物識別子タイプ | NCID | |||||||||||
収録物識別子 | AA11235941 | |||||||||||
書誌情報 |
研究報告コンピュータセキュリティ(CSEC) 巻 2023-CSEC-100, 号 47, p. 1-8, 発行日 2023-02-27 |
|||||||||||
ISSN | ||||||||||||
収録物識別子タイプ | ISSN | |||||||||||
収録物識別子 | 2188-8655 | |||||||||||
Notice | ||||||||||||
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. | ||||||||||||
出版者 | ||||||||||||
言語 | ja | |||||||||||
出版者 | 情報処理学会 |