ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. コンピュータビジョンとイメージメディア(CVIM)
  3. 2022
  4. 2022-CVIM-230

Bio-Medical Data Classification Approaches with Limited Annotation

https://ipsj.ixsq.nii.ac.jp/records/217814
https://ipsj.ixsq.nii.ac.jp/records/217814
9095bea2-fe23-4db5-bce4-5c04e5c3820c
名前 / ファイル ライセンス アクション
IPSJ-CVIM22230001.pdf IPSJ-CVIM22230001.pdf (12.0 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2022-05-05
タイトル
タイトル Bio-Medical Data Classification Approaches with Limited Annotation
タイトル
言語 en
タイトル Bio-Medical Data Classification Approaches with Limited Annotation
言語
言語 eng
キーワード
主題Scheme Other
主題 D論セッション
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Kyushu University
著者所属
Kyushu University
著者所属(英)
en
Kyushu University
著者所属(英)
en
Kyushu University
著者名 Shota, Harada

× Shota, Harada

Shota, Harada

Search repository
Seiichi, Uchida

× Seiichi, Uchida

Seiichi, Uchida

Search repository
著者名(英) Shota, Harada

× Shota, Harada

en Shota, Harada

Search repository
Seiichi, Uchida

× Seiichi, Uchida

en Seiichi, Uchida

Search repository
論文抄録
内容記述タイプ Other
内容記述 This paper aims to solve the problem of limited annotation in several bio-medical data analysis tasks. Specifically, group-based labeling utilizing constrained clustering and semi-supervised learning are proposed as the approaches. For group-based labeling utilizing constrained clustering, I proposed a new constrained clustering method, where a user attaches annotations to several sample pairs. Annotations are two types: cannot-link and must-link. The pair with cannot-link should not belong to the same cluster, whereas the pair with must-link should belong. These annotations are useful especially for medical data, because medical experts can have a more expected clustering result by a small number of annotations. Moreover, those annotations are treated as soft-constraints and therefore medical experts can attach them without extreme carefulness. For semi-supervised learning in bio-medical data classification tasks, I proposed order-guided disentangled representation learning. This method performs disentangled representation learning with prior knowledge that is effective for learning bio-medical data classification tasks. This method could improve classification performance even with limited annotation by effectively utilizing the prior knowledge through disentangled representation learning.
論文抄録(英)
内容記述タイプ Other
内容記述 This paper aims to solve the problem of limited annotation in several bio-medical data analysis tasks. Specifically, group-based labeling utilizing constrained clustering and semi-supervised learning are proposed as the approaches. For group-based labeling utilizing constrained clustering, I proposed a new constrained clustering method, where a user attaches annotations to several sample pairs. Annotations are two types: cannot-link and must-link. The pair with cannot-link should not belong to the same cluster, whereas the pair with must-link should belong. These annotations are useful especially for medical data, because medical experts can have a more expected clustering result by a small number of annotations. Moreover, those annotations are treated as soft-constraints and therefore medical experts can attach them without extreme carefulness. For semi-supervised learning in bio-medical data classification tasks, I proposed order-guided disentangled representation learning. This method performs disentangled representation learning with prior knowledge that is effective for learning bio-medical data classification tasks. This method could improve classification performance even with limited annotation by effectively utilizing the prior knowledge through disentangled representation learning.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11131797
書誌情報 研究報告コンピュータビジョンとイメージメディア(CVIM)

巻 2022-CVIM-230, 号 1, p. 1-16, 発行日 2022-05-05
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8701
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:22:08.294952
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

Shota, Harada, Seiichi, Uchida, 2022: 情報処理学会, 1–16 p.

Loading...

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3