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Abstract: This paper aims to solve the problem of limited annotation in several bio-medical data analysis tasks.
Specifically, group-based labeling utilizing constrained clustering and semi-supervised learning are proposed as the
approaches. For group-based labeling utilizing constrained clustering, I proposed a new constrained clustering method,
where a user attaches annotations to several sample pairs. Annotations are two types: cannot-link and must-link. The
pair with cannot-link should not belong to the same cluster, whereas the pair with must-link should belong. These
annotations are useful especially for medical data, because medical experts can have a more expected clustering result
by a small number of annotations. Moreover, those annotations are treated as soft-constraints and therefore medical
experts can attach them without extreme carefulness. For semi-supervised learning in bio-medical data classification
tasks, I proposed order-guided disentangled representation learning. This method performs disentangled representation
learning with prior knowledge that is effective for learning bio-medical data classification tasks. This method could
improve classification performance even with limited annotation by effectively utilizing the prior knowledge through
disentangled representation learning.
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1. Introduction
1.1 Background

Building a diagnostic support system is one of the important
tasks to help medical doctors. Medical doctors diagnose various
diseases from various data, such as endoscopic images, electro-
cardiograms, and brain magnetic resonance imaging. Diagnostic
support systems aim to enhance decision-making of medical doc-
tors by using Artificial Intelligence (AI) technologies.

As shown in Figure 1, there are two main strategies to realize
diagnosis support systems using AI technology. One is a rule-
based method [1], which utilizes heuristic rules manually spec-
ified by medical doctors. To construct a rule-based method, we
first extract expert knowledge from medical doctors and design
decision rules based on the extracted knowledge. The other is
a machine learning-based method [2, 3], which utilizes a large
amount of actual diagnosis cases to derive decision rules automat-
ically and statistically. In constructing a machine-based method,
we first collect data and attach annotations, such as diagnostic
results and disease information, to each sample. We train a ma-
chine learning-based model using annotated data as actual diag-
nosis cases.

The development of deep learning techniques has made it pos-
sible to implement a machine learning-based diagnostic support
system with high accuracy. In recent years, deep learning tech-
niques have been applied to various tasks in many fields, such as
image recognition, signal recognition, and natural language pro-
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Fig. 1: A standard flow of a diagnostic support system construction.

cessing, and achieving an excellent performance of these tasks.
Deep learning techniques have already been applied to many
tasks in bio-medical fields [4–6].

Deep learning-based methods require a large amount of anno-
tated samples to increase their performance. In general, for a
machine-based method, we first collect data and attach annota-
tions, such as diagnostic results and disease information, to each
sample. Then, we train a machine learning-based model using an-
notated data. For deep learning, far more data is necessary than
other machine learning methods, to fully utilize its high flexibil-
ity.

However, it is difficult to obtain a large amount of annotated
samples in bio-medical data analysis tasks because the number
of annotators is limited. In the general object image classifica-
tion task, such as ImageNet classification, it is easy to prepare a
large number of annotators using crowdsourcing services such as
Amazon Mechanical Turk. In contrast, it is difficult to secure a
large number of annotators for bio-medical data analysis tasks be-
cause it can deal only with medical experts. Due to the reason, we
are often forced to build a deep learning-based diagnostic support
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Fig. 2: Approaches that correspond to each step for constructing a ma-
chine learning-based method to solve the problem of limited
annotation.

system with limited annotations for training.

1.2 Motivation
Researchers have proposed various methods to solve the prob-

lem of limited annotation in classification tasks [7–11]. This pa-
per focuses on two approaches: group-based labeling and semi-
supervised learning, which correspond to each step for construct-
ing a machine learning-based method, as shown in Figure 1.

Figure 2 shows the correspondence between each approach of
this paper and each step for constructing a machine learning-
based method. Group-based labeling is an approach that corre-
sponds data annotation step, and semi-supervised learning is an
approach for model training step.
1.2.1 Group-Based Labeling with Constrained Clustering

Group-based labeling is an efficient strategy for collecting a
sufficient amount of annotated samples for machine learning-
based methods [9, 10, 12–18]. In group-based labeling, we first
gather similar samples by clustering and then have an expert la-
bels the samples of each cluster (i.e., each group). As a result,
annotation costs drastically decrease by this cluster-wise anno-
tation process, compared to the sample-wise general annotation
process.

To effectively reduce annotation costs with group-based label-
ing, the purity of clusters is important. If the annotator has a
glance at the samples of each cluster and finds that a certain clus-
ter comprises the samples from the same class, they can give the
same class label to all the samples at once. Therefore, to annotate
efficiently with group-based labeling, we need to obtain clusters
with high purity.

Constrained clustering that uses annotations for sample pairs
as constraints is a promising approach to improve the purity of
clusters for efficient group-based labeling. Annotations for sam-
ple pairs are two types: cannot-link and must-link. The cannot-
link is attached to the sample pair that should belong to differ-
ent clusters, whereas the must-link is attached to the sample pair
that should belong to the same cluster. Unlike typical unsuper-
vised clustering methods, constrained clustering optimizes clus-
ters while satisfying those links. If medical expert picks a limited
number of confusing sample pairs and attach the links to them in
advance, we may obtain high purity clusters by applying a con-
strained clustering.

In the bio-medical data clustering scenario, we should handle
two issues. The first issue is that the must-link is not always use-
ful. Let us assume a clustering task of endoscopic images, where
each cluster should contain images of a single organ or compo-
nent of an organ. In this task, the variance of image appearances

in a class is large because they are affected by some factors such
as camera angle and light source intensity. Since those image
appearances are very different, satisfying the must-link of such
image pair results in an unexpectedly large cluster with low pu-
rity. The second issue is that the annotation cost of attaching the
links of bio-medical data is high compared to general data cases
because this work requires the cooperation of medical experts.
Medical experts still need to look at the data collection and attach
links. Even though it is not necessary to attach links to many sam-
ple pairs, the medical experts should select the confusing sample
pairs carefully and, this is a time-consuming task.
1.2.2 Semi-Supervised Learning for Bio-Medical Data Clas-

sification
Semi-supervised learning methods that efficiently utilize un-

labeled samples for training a classifier with limited annota-
tions have been reported. To improve the classification perfor-
mance, the conventional semi-supervised learning methods use
the estimation result from the model trained by small amounts
of annotated data [19, 20] and other information such as prior
knowledge of the target data and information related to the target
task [21, 22].

In bio-medical image classification, differences between
classes are often unclear. For example, in ulcerative colitis (UC)
classification from endoscopic images, the UC classifier needs to
focus on subtle features, such as visible vascular patterns and ul-
cers.

The issue of subtle differences between classes is not an issue
in fully-supervised learning, where all samples are annotated with
class information. Using given class labels, the UC classifier can
automatically find discriminative features by contrastive learning
and general classification loss, such as binary cross-entropy loss
and hinge loss.

In contrast to fully-supervised learning, the issue of subtle dif-
ferences between classes is a major problem in semi-supervised
learning, where the amount of labeled samples is limited. When
the majority of the sample set consists of samples without class
labels, the UC classifier cannot find reasonable discriminative
features by contrastive learning and general classification loss.

A possible approach is to use prior knowledge, which is various
for each actual medical image classification task. An example of
prior knowledge for UC classification tasks is that the severity of
endoscopic images changes smoothly with their captured order,
because endoscopic images are taken sequentially while endo-
scope moves inside the organs. More specifically, although they
are not a video sequence, they are captured quasi-continuously
enough to observe the smooth transition of the severity. Thus,
if we utilize such cost-free prior knowledge on the training of
the UC classifier, we can expect improved classification perfor-
mance.

1.3 Purpose
1.3.1 Self and Soft-Constrained Clustering for Group-

Based Labeling of Bio-Medical Data
As mentioned in Section 1.2.1, in bio-medical data clustering

scenarios, we should handle two issues: the first issue is that the
links for constrained clustering are not always useful, and the sec-
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ond issue is that the cost of attaching links is high.
I propose a soft constrained clustering method suitable for bio-

medical data clustering tasks to handle the first issue. The advan-
tage of the proposed method is that it allows a violation of must-
link. This property is useful when the links attached by medical
experts are noisy or too hard to satisfy. In addition, to resolve
the second issue, I propose a self and soft-constrained clustering
method. Self-constraints are must-links, given automatically by
defined as cost-free prior knowledge that temporally adjacent en-
doscopic images tend to belong to the same class. In other words,
the self-constraints forces adjacent endoscopic images to be clas-
sified into the same class. At the same time, the self-constraints
are treated as soft-constraints to allow the adjacent images to be
different classes.
1.3.2 Semi-Supervised Learning with Disentangled Repre-

sentation Learning Using Prior Knowledge
In semi-supervised learning for bio-medical data classification,

it is often difficult to find reasonable discriminative features be-
cause the differences between classes are subtle. Prior knowledge
related to each classification may help reduce this difficulty.

For example, in UC classification tasks, we can easily obtain
two information, the location in a colon (e.g., left colon) and im-
age capturing order. As mentioned in Section 1.2.2, image cap-
turing order is effective to train an UC classifier. However, the
problem is that temporally adjacent images also tend to belong
to the same location class. Therefore, if learning using the im-
age capturing order is directly applied to UC classification tasks,
it may find discriminative features for location classification be-
cause the features for classifying UC images are subtle. There-
fore, to effectively utilize image capturing order for learning the
UC classifier, it is necessary to separate the location-dependent
and UC-dependent features from endoscopic images.

I propose order-guided disentangled representation learning
that utilizes disentangled representation learning and image cap-
turing order of endoscopic images. Disentangled representation
learning is a representation learning to divide various factors into
a feature space [23–29]. The proposed method separates the
location-dependent and UC-dependent features into the feature
space by introducing the disentangled representation learning. In
addition, to compensate for the lack of UC labels, the proposed
method uses the image capturing order for learning the UC clas-
sifier.

1.4 Contributions
The contributions of this paper are follows:
• I propose a soft constrained clustering method suitable

for bio-medical data clustering. It demonstrates the ef-
fectiveness of the proposed clustering method by endo-
scopic image clustering. The experiments are performed
under several conditions, and in all cases, the proposed
clustering method is superior. In addition, it proposes a
self and soft-constrained clustering method that uses self-
constraints as must-links, where self-constraints are defined
as prior knowledge. The proposed method uses the self-
constraints defined from the temporal continuity of endo-
scopic images and outperforms several state-of-the-art soft-

constrained clustering methods in the experiment of endo-
scopic image clustering without annotation.

• I propose an order-guided disentangled representation learn-
ing method that uses disentangled representation learning
and image capturing order of endoscopic images. It demon-
strates the effectiveness of the proposed semi-supervised
learning method for UC classification tasks. The experiment
indicates that the proposed method outperforms the existing
semi-supervised learning methods.

2. Self and Soft-Constrained Clustering for
Group-Based Labeling of Bio-Medical Data

2.1 Background
Constructing a large-scale labeled image set is important for

achieving sufficient performance with deep neural networks in
image classification tasks and often requires a huge effort by an-
notators. In general object image classification tasks, image la-
beling is still tractable by using crowdsourcing services, such as
Amazon Mechanical Turk, which employs a large number of an-
notators. However, such services cannot be utilized for label-
ing medical images, such as endoscopic images, because expert
knowledge is required to label medical images. Therefore, con-
structing a medical image dataset is still intractable and is a seri-
ous bottleneck for medical image classification tasks.

The purpose of this thesis is to propose a novel clustering
method for group-based labeling, which relaxes the labeling dif-
ficulty. In group-based labeling methods, we first gather similar
images by clustering and then have an expert label the images
of each cluster, as shown in Figure 3(a). If the annotator has a
glance at the images of each cluster and finds that a certain clus-
ter is comprised of the images from the same class, it is possible
for him or her to give the same class label to all the images at
once. (In the figure, a cluster is labeled as “Organ A” by this pro-
cedure.) Even if a cluster contains several outliers (i.e., images
of the minor classes in the cluster), they can be easily found and
discarded because their appearance is different from the inliers
(i.e., the majority class samples in the cluster). As a result, by
using group-based labeling, the labeling process can be dramat-
ically accelerated, especially when the purity of each cluster is
reasonably high.

To improve the purity of each cluster for efficient group-based
labeling, constrained clustering is a promising approach. Dif-
ferent from typical unsupervised clustering methods, constrained
clustering optimizes clusters while considering a limited num-
ber of constraints. Specifically, two types of constraint, called
must-link and cannot-link, are given to image pairs, as shown in
Figure 3(b). A pair of images with a must-link should belong
to the same cluster, whereas a pair of images with a cannot-link
should belong to different clusters. If medical experts pick a lim-
ited number of confusing image pairs and attach those links in
advance, we can expect that the resulting clusters will have high
purity.

However, for practical medical image clustering scenarios, the
conventional constrained clustering methods should handle the
following two issues. The first issue is that the links (i.e. con-
straints) are not always useful. Let us assume a clustering task
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Fig. 3: (a) Group-based labeling by clustering. (b) Constraints given
to sample pairs to control the clustering results. (c) Results of
hard-constrained clustering. A must-link attached to the sam-
ple pair from the same organ leads too large a cluster because
of the large difference in sample appearance. (d) The proposed
soft-constrained clustering reduces the effect of the inappropri-
ate constraints.

of endoscopic images, where each cluster should contain images
of a single organ or component of an organ. In this task, a med-
ical expert attaches a must-link to a pair of images of the same
organ, even though their appearances may be very different due
to, for example, a difference in camera angle. Since those images
are very distant in the feature space, satisfying the must-link re-
sults in an unexpectedly large cluster with low purity, as shown
in Figure 3(c).

The second issue is that attaching the links requires extra effort
by medical experts. They still need to look at the image collec-
tion and attach links, especially to confusing image pairs. Even
though it is not necessary to attach links to a large number of im-
age pairs, the medical experts should select the confusing image
pairs carefully and, this is a time-consuming task.

To resolve the first issue, I propose a novel soft-constrained
clustering for medical image clustering tasks. The difference be-
tween the proposed method and conventional constrained cluster-
ing methods is that it allows the violation of must-link constraints
to ignore the constraint between distant samples, as shown in Fig-
ure 3(d). Since the proposed soft-constrained clustering method
is formulated as a single optimization problem, its solution is
rather simpler than those of the conventional (hard) constrained
clustering methods. To validate the effectiveness of the pro-
posed soft-constrained clustering method, I collected the endo-
scopic image dataset from Kyoto Second Red Cross Hospital.
In the experiment of the endoscopic images, the proposed soft-
constrained clustering method outperformed several state-of-the-
art soft-constrained clustering methods.

To handle the second issue, I propose a self and soft-
constrained clustering method, where prior knowledge relevant
to the target images is used as natural constraints. Specifically
for classifying endoscopic images into organ classes, we can use
the order in the image sequence as prior knowledge because con-
secutive images often belong to the same organ (e.g., esophagus,
stomach), as shown in Figure 4(a). By putting a soft must-link

Temporary successive frames 
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Organ A Organ B Organ C

capturing order

Endoscopic image sequence example(a)

Self-constrained clustering

Link can be given

without medical expert

Give links to temporally 
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Fig. 4: (a) An endoscopic image sequence that captures parts of three
organs. (b) The self and soft-constrained clustering wherein the
order of the images in the sequence is used as soft must-links.

between consecutive images, we can expect to obtain high-purity
clustering results without extra effort by experts, as shown in Fig-
ure 4(b).

I show that the self and soft-constrained clustering method,
which utilizes the sequence-based constraints based on prior
knowledge as must-link constraints, improves the purity of clus-
ters. To validate the sequence-based constraints, I clustered the
endoscopic images that were collected from Kyoto Second Red
Cross Hospital. The proposed soft-constrained clustering method
utilizing the sequence-based constraints improved clustering per-
formance without label information, and the proposed method
outperformed several soft-constrained clustering methods utiliz-
ing sequence-based constraints.

I demonstrated the effectiveness of the proposed method by ap-
plying it to group-based labeling for the construction of an organ-
labeled dataset in endoscopy, which is very useful in practical
clinical applications. In endoscopy, to make the examination re-
liable, the secondary reading is performed, where the images are
checked by another doctor after the primary reading. However,
checking all the images one by one requires a huge effort. If
we can train an organ recognition model with the organ-labeled
dataset, classifying all the images by this model allow that doc-
tors can skip the step of determining the location where each im-
age was taken. Moreover, by using this model, it is possible to
construct a user interface for confirming whether the entire organ
was taken by endoscopy. This is called deviation monitoring and
is useful content for the education of non-experts in endoscopy.
Therefore, the construction of an organ-labeled dataset is impor-
tant for clinical diagnosis, and it is also important to reduce the
effort of this construction with the proposed methods. In addi-
tion, the proposed method is the clustering method for perform-
ing group-based labeling with little effort, so it can be sufficiently
applied not only to organ image tasks but also to other tasks.

The contributions of this work are summarized as follows:
• I propose a soft-constrained clustering method that is formu-

lated as a single optimization problem. The method obtains
a suitable solution even if the data distribution is multimodal
because it does not use a hard-constrained clustering.

• The proposed soft-constrained clustering method outper-
formed several conventional methods in an endoscopic im-
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age clustering task that included a small number of correct
labels. This experiment was performed under several condi-
tions, and in all cases, the proposed method was superior.

• I introduce temporal ordering information of the consecutive
images as must-link constraints for soft-constrained cluster-
ing. We show that soft-constrained clustering of endoscopic
images can be conducted without medical experts.

• I show that clustering performance improves when
sequence-based constraints are used in the endoscopic
image clustering without constraints derived from the
correct labels.

2.2 Related Work
2.2.1 Constrained Clustering

The most famous constrained clustering method is COP-K-
Means [30], which modifies the assignment step of ordinary K-
means to satisfy must-link and cannot-link constraints. In ad-
dition, Shental et al. proposed a constrained clustering method
based on a Gaussian mixture model [31]. In this method, the con-
straints are given as is-equivalent constraints and not-equivalent
constraints, and the samples given is-equivalent (not-equivalent)
constraints belong to the same (different) components. Li et al.
devised a constrained spectral clustering method by developing a
new embedding that introduces pairwise constraints to the spec-
tral embedding [32]. They also proposed a constrained clustering
method using the kernels that satisfy the pairwise constraints [33].
Recently, Le et al. proposed a binary optimization for constrained
K-means (BOCK) in which the optimization problem is formu-
lated as a single binary linear programming problem [34]. Unlike
the algorithm in COP-K-Means, which updates the clustering re-
sult to satisfy the constraint, BOCK directly obtains a clustering
result that satisfies the constraint. These methods perform hard-
constrained clustering, so it is difficult for them to obtain rea-
sonable clusters that satisfy the constraints especially when con-
straints are given between distant samples. Thus, they are not
suitable for medical image clustering.

Soft-constrained clustering methods such as CVQE [35], and
LCVQE [36] have been proposed to relax these constraints. For
example, CVQE penalizes the violation of must-link constraints
by adding a penalty based on the distance between the two near-
est cluster centers of these two points. LCVQE reduces com-
putational costs by modifying the penalty term in the objective
function of CVQE. Ares et al. [37] proposed a method that ex-
tends the batch K-means method to a soft-constrained cluster-
ing method. Similar to these methods, the PCK-means [38], and
MPCK-means [39] methods design the penalty function 0 − 1
Loss that imposes a constant value on the objective function as
a penalty when the constraint is violated. These soft-constrained
clustering algorithms first solve the hard-constrained clustering
problem and then modify the cluster assignment of each sample.
This two-step optimization can eliminate a small number of er-
roneous constraints, but it cannot deal with multimodal distribu-
tions.

Recently, novel frameworks of constrained clustering by us-
ing deep learning techniques have been proposed. In particular,
Hsu et al. proposed a neural-network-based end-to-end cluster-

ing framework for pairwise constraints [40]. In this framework,
the neural network outputs the cluster probabilities of the input
sample and learns to reduce (increase) the Kullback-Leibler di-
vergence of the cluster probabilities between similar (dissimilar)
samples. Zhang et al. proposed a framework for constrained
clustering that optimizes neural networks with an objective func-
tion that equalizes the cluster probabilities of constrained sam-
ples [41]. Moreover, Fogel et al. proposed CPAC, a framework
for constrained clustering using a neural network [42]. CPAC
simultaneously optimizes the ordinary objective function of au-
toencoders and the objective function that reduces the distance of
the constrained samples in the latent space obtained from autoen-
coders. Although these methods improve clustering performance,
they assume hard-constrained clustering and are not suitable for
medical image clustering tasks where constraints are imposed be-
tween distant samples.

The proposed method was formulated as mixed-integer linear
programming to perform soft-constrained clustering. Therefore,
it directly obtains a clustering result that satisfies the constraint
and is suitable for medical image clustering tasks.
2.2.2 Group-Based Labeling

Group-based labeling is an efficient strategy to collect a suf-
ficient number of labeled images for training machine-learning-
based methods, and several group-based labeling methods have
been reported [9,10,12–18]. Here, we can accelerate the labeling
process if it is possible to gather images with similar appearances
into a cluster based on some criteria. For example, Wigness et al.
proposed hierarchical cluster guided labeling (HCGL) [9, 10]. In
this method, unlabeled samples are first clustered using a hierar-
chical clustering method; then, groups of samples are repeatedly
selected for labeling. Mousavi et al. proposed a system for speed-
ing up the labeling of large collections of unlabeled images [14].
In this system, unlabeled samples are mapped to numerical fea-
ture embeddings and clustered. The clustered samples are then
labeled by a domain expert, and the labeled samples are used to
train the classifier, which predicts labels for new unlabeled sam-
ples. Galleguillos et al. proposed a framework for speeding up
object labeling of unlabeled images [13]. In this framework, im-
ages are partitioned into multiple segments and then clustered for
labeling. In addition, Biswas et al. proposed an algorithm to
efficiently select sample pairs for constraints in constrained clus-
tering [12].

These methods assume that clustering is performed first in or-
der to obtain a cluster with high purity. Therefore, the idea of
obtaining high-purity clusters by imposing constraints such as in
the proposed method is useful in any of the above cases.
2.2.3 Bio-Medical Data Annotation with Crowdsourcing

Services
Several studies have been reported that validated the effective-

ness of constructing annotated medical data datasets using crowd-
sourcing services [43–45]. In [43], they investigated the effec-
tiveness of dataset construction for endoscopic image registration
tasks using crowdsourcing services. They reported that the model
trained with the dataset constructed using the crowdsourcing ser-
vice achieved performance close to the performance when trained
with the dataset constructed by medical experts. Kim et al. re-
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ported the effectiveness of crowdsourcing services for dataset
construction for surgical tool detection tasks in cataract surgery
videos [44]. Moreover, in [45], they reported the validity of air-
way region annotation in the chest in the computed tomography
(CT) images by crowdsourcing services. They showed that some
annotated samples of the datasets acquired by crowdsourcing ser-
vices were incorrect annotations. However, when incorrect an-
notation samples were excluded, it was shown that there was a
moderate correlation with the annotation results by medical ex-
perts.

From these studies, it is shown that the crowdsourcing service
is effective for annotation that does not require specialized knowl-
edge such as image registration and surgical tool detection. In
contrast, if it involves expert knowledge such as airway area an-
notation, it may not be possible to construct an accurate data set
with a crowdsourcing service. In contrast, when using crowd-
sourcing services for annotations that require expert knowledge,
such as airway region annotations, the obtained dataset may not
be valid. The purpose of this thesis is to improve the efficiency
of annotation that involves such expert knowledge, and I propose
constrained clustering for group-based labeling that can reduce
the effort by annotators.

2.3 Soft-Constrained Clustering
To explain the problem setting of soft-constrained clustering,

I will start with a description of the standard K-Means cluster-
ing with a binary optimization approach. Then, I will describe
the constrained clustering task and extend the standard K-means
clustering method to the soft-constrained clustering method. In
addition, I explain the actual optimization for the proposed soft-
constrained clustering method with ordinary constraints.
2.3.1 Problem Setting

Given a set of samples X = {x j ∈ R
D}Nj=1, where N and D

are the number of the samples and the dimension of the feature
vector, respectively, the aim of K-Means is to find K cluster cen-
troids and to assign each sample x j to a cluster. This clustering
algorithm minimizes the within-cluster sum of squares (WCSS).
The objective function is formulated as:

min
S,C
|X − CS|2F , (1)

s.t. si, j ∈ {0, 1}, ∀i, j,
K∑

i=1

si, j = 1, ∀ j = 1, . . . ,N,

where X ∈ RD×N is a matrix whose j-th column is x j ∈ R
D.

C ∈ RD×K is a matrix whose i-th column corresponds to the clus-
ter centroid ci ∈ R

D, and S ∈ RK×N is a cluster assignment ma-
trix, where x j is assigned to the i-th cluster when the value of
the (i, j)-th element si, j is 1, and 0 otherwise. The first constraint
ensures that each cluster assignment si, j has 1 or 0, and the sec-
ond constraint ensures that each sample is assigned to only one
cluster. The j-th column of CS is the centroid of the cluster to
which the j-th sample x j is assigned. The operation | · |F denotes
the Frobenius norm.

In the constrained clustering task, we obtain a clustering re-
sult that satisfies constraints called must-links and cannot-links.

These constraints are attached to a sample pair and define the re-
lationships between the samples. Sample pairs with a must-link
constraint should belong to the same cluster. In contrast, the pairs
with a cannot-link constraint cannot belong to the same cluster.
In general, these constraints are derived from a small number of
samples that have been correctly labeled by experts. Denoting Li

as the set of labeled samples for class i, x j ∈ Li indicates the j-th
sample belongs to the i-th class. Using the labeled samples, we
register a sample pair in the must-link setM if its pair belongs to
the same class, and we register it in the cannot-link set D if the
samples of the pair belong to different classes.

The proposed soft-constrained clustering method also acquires
the cluster centroids and cluster assignments that minimize the
WCSS distortion. The difference from the general constrained
clustering is that the must-link set M behaves as penalties. In
contrast, the cannot-link set D is still employed as hard con-
straints, because satisfying cannot-link constraints always has a
positive effect on the clustering results.

The objective function for the proposed method is formulated
as:

min
S,C
|X − CS|2F + ω

∑
(xp ,xq)∈M

K∑
i=1

|si,p − si,q|, (2)

s.t. si, j ∈ {0, 1}, ∀i, j,
K∑

i=1

si, j = 1, ∀ j = 1, . . . ,N,

si,p + si,q ≤ 1, ∀i = 1, . . . ,K, ∀(xp,xq) ∈ D, (3)

where the second term of (2) represents the soft-constraints pro-
vided by the must-links. When two samples xp and xq registered
in the must-link setM are assigned to the different clusters, it be-
comes |si,p−si,q| = 1; thus, it penalizes the objective function with
a constant value ω ∈ R+. The inequality constraints (3) represent
the cannot-link constraints. When two samples xp and xq regis-
tered in the cannot-link set D are assigned to the same cluster i,
the solution is not allowed because si,p + si,q = 1 + 1 ≰ 1, which
violates the constraint. The proposed method obtains the optimal
clustering result under such constraints and penalties.
2.3.2 Optimization for Soft-Constrained Clustering

To minimize the objective function (2), I take an optimization
approach that alternately updates the cluster centroid matrix C
and the assignment matrix S until convergence. The approach is
similar to the original K-means optimization approach (EM algo-
rithm).

In the update step for the cluster centroid matrix C, the updated
C is computed from X and a fixed S. Therefore, we can ignore
the constraints and the penalty term of the objective function. We
update C by solving a regularized least squares problem to avoid
numerical issues with large-scale problems [46]:

min
C
|X − CS|2F + λ|C|

2
F , (4)

where λ is the regularization parameter. In the experiments de-
scribed later, I set λ to 10−4. The problem is a convex quadratic
optimization and can be solved in a closed form:

C = XST(SST + λI)−1, (5)
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Fig. 5: Outline when attaching must-link to temporally adjacent sam-
ple pairs. The circle represents the sample in the sequence, and
the circle color indicates each sequence. The arrows indicate
the capturing order of the sequence, and the sample pair con-
nected by the green line is the sample pair with self-constraint.

where I is a K×K identity matrix, and (SST+λI)−1 is guaranteed
to be full-rank for λ > 0.

Next, we update the cluster assignment matrix S with C fixed.
Let Y ∈ RK×N be a matrix whose (i, j)−th element yi j is the
squared distance between x j and ci, namely, yi, j = |ci − x j|

2
2. By

using Y, the first term of (2) can be rewritten as ⟨Y,S⟩F , which
represents the Frobenius inner product of Y and S. In addition,
the second term of (2) is rewritten with a set γ = {γi,(p,q)} of K×M
variables, which is defined for each must-link pair (xp,xq) ∈ M,
where M is the number of must-link pairs. Consequently, the up-
dating problem for S is:

min
S,γ
⟨Y,S⟩F + ω

∑
(xp ,xq)∈M

K∑
i=1

γi,(p,q), (6)

s.t. si, j ∈ {0, 1}, ∀i, j,
K∑

i=1

si, j = 1, ∀ j = 1, . . . ,N,

si,p + si,q ≤ 1, ∀i = 1, . . . ,K, ∀(xp,xq) ∈ D,

si,p − si,q ≤ γi,(p,q), ∀i, ∀(xp,xq) ∈ M,

−si,p + si,q ≤ γi,(p,q), ∀i, ∀(xp,xq) ∈ M,

where γ = {γi,(p,q)}. This problem is a mixed-integer linear pro-
gramming problem, i.e., a combination of binary programming
for S and linear programming for γ. The optimal solution is
obtained by using the branch-and-bound optimization technique.
The above steps for updating C and S are performed alternately
until convergence. In the experiments, the initial C and S for the
proposed method were set based on the standard K-Means clus-
tering for faster convergence.

2.4 Self and Soft-Constrained Clustering
As mentioned in Section 2.1, in soft-constrained clustering of

sequence images, such as endoscopic images, soft constraints can
be automatically obtained by using prior knowledge, which is that
temporally successive images tend to belong to the same class.
Specifically, I generate soft constraints between pairs of succes-
sive images based on this knowledge.

Given a set of Ns sequences Z = {X(k) ∈ RD×nk }
Ns
k=1, where

X(k) is the k-th sequence and nk is the number of samples in the
k-th sequence, I generate a must-link constraint set T based on
the temporal ordering information. Each matrix X(k) represents a
sequence of samples whose j-th column is the j-th sample in a
sequence x(k)

j ∈ R
D. The temporally adjacent sample pairs (i.e.,

(x(k)
j ,x

(k)
j+1)) are registered in the must-link constraint set T as

shown in Figure 5. Specifically, when Z is given, the number of
the constraints is

∑Ns
k=1(nk − 1).

In the self and soft-constrained clustering method, the objec-
tive function is a formula (2) where the must-link set M is re-
placed by T . The optimization manner is the same as that of the
proposed soft-constrained clustering method.

2.5 Clustering Experiments
I performed two experiments on the proposed methods de-

scribed in Sections 2.3 and 2.4. They are overviewed in Table
1. Since the proposed methods have different purposes and con-
straints, the experiments used different datasets and metrics. The
datasets for the experiments were collected from Kyoto Second
Red Cross Hospital. The patients were told the aim of the study
and provided written informed consent before participating in the
trial. The experiments were approved by the Kyoto Second Red
Cross Hospital Ethics Committee.

2.6 Evaluation of Soft-Constrained Clustering
2.6.1 Dataset

To evaluate the proposed soft-constrained clustering method,
in which a small set of labeled images was given, I conducted
experiments using a large-scale endoscopic image dataset. This
dataset is comprised of 11,599 stomach images collected from
Kyoto Second Red Cross Hospital. For the performance eval-
uation, the true class label was attached to each image by ex-
pert endoscopists. The number of classes were 20, as listed in
Table 2. The classes were defined on the basis of the tradi-
tional anatomical classification used by endoscopists and by cam-
era angle (look-down and look-up). To make the feature vector,
DenseNet169 [47] pre-trained by ImageNet [48] was used to ex-
tract 1,664-dimensional feature values from the original RGB im-
age (224 × 224 pixels). The reason for adopting DenseNet is that
this model is widely known as one of the high-performance mod-
els and a model pre-trained by ImageNet is distributed within the
world.
2.6.2 Experimental Conditions

In group-based labeling, it is important to collect enough la-
bels not only for specific classes, but also for every class. In an
image set that consists of imbalanced numbers of class samples,
if we simply label the samples belonging to a prominent class
for a cluster and discard the others, some classes may not be la-
beled (e.g., samples in a large class tend to be a prominent class
and those in a small class tend to be discarded). To collect labels
for every class, we first find the prominent cluster for each class.
A prominent cluster contains the most labeled samples of a spe-
cific class among all of the clusters, and the prominent cluster is
shown to an expert. The expert attaches the same class label to
them at once if the cluster only contains samples from the same
class. Even if the cluster contains several samples from different
classes, the expert can do the same after discarding those sam-
ples. This process is repeated for every class. The remaining
samples (the discarded samples and the samples in other clusters)
are fed to the clustering in the next round. The overall process
is repeated until enough samples have been labeled. One way to
verify whether a sufficient number of labeled samples has been
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Table 1: Outline of the experiments. The target method, evaluation index, and data set of each experiment are shown.
Experiment Purpose Method Metric Dataset
Section 2.6 Obtain high-purity Soft-constrained Prominent-purity Stomach dataset

cluster of each class Prominent-recall (Class listed
Purity in Table 2)

Section 2.7 Improve purity Self and soft- Purity EGD dataset
of all clusters constrained Colon dataset

(Class listed
in Table 3)

Table 2: Twenty classes defined for stomach endoscopic images. BD, UP, MD, LO, LD, and LU stand for (stomach) body, upper, middle, lower,
(camera) look-down, and look-up, respectively.

Fundus Fundus on UP BD/ LU UP BD/ LU
UP BD/ LD UP-MD BD/LU UP-MD BD/ LD
MD BD/ LU MD BD/ LD MD-LO BD/ LU
MD-LO BD/ LD LO BD/LD Angular Incisure LO BD/ LD
AntralZone on LO BD/ LD Angular Incisure Angular Incisure-Antral Zone
Antral Zone Pyloric Antral Pyloric Zone
Pylorus Junction

Table 3: List of classes for the datasets used in Section 2.7.
Dataset Class
EGD dataset Esophagus

Stomach
Duodenum

Colon dataset Right colon
Rectum
Left colon

obtained is to train a classifier with the labeled samples and in-
vestigate the test performance of the trained classifier.

In light of the above methodology, I decided to focus on the
prominent clusters in evaluation of the proposed method. To eval-
uate whether the clustering method has obtained excellent promi-
nent clusters, I designed new performance metrics prominent-
purity and prominent-recall. Prominent-purity shows the percent-
age of samples that can be given the correct label in prominent-
cluster by one labeling operation and is the ratio of the number of
true positives to the number of samples in the prominent cluster,
which is the cluster that contains the most labeled samples of a
certain class. Prominent-recall shows the percentage of samples
that can be given the correct label in the entire data by one label-
ing operation and is the ratio of the number of true positives in
the prominent cluster to the total number of samples of a certain
class in the dataset. Therefore, these metrics can be used to con-
firm the effectiveness of the clustering method for the efficiency
of group-based labeling. For a fair comparison with unsupervised
clustering (K-means), these metrics were calculated, excluding
the samples used for constraints. The (traditional) purity is the
sum of the number of samples of the majority class in each clus-
ter divided by the total number of samples.

The proposed method was compared with several conven-
tional clustering methods, such as K-means (KM), the binary
optimization approach for constrained K-means (BOCK) [34],
metric-based pairwise constrained K-means (MPCK) [39], and
linear-time constrained vector quantization error (LCVQE) [36].
KM is an unconstrained clustering, and BOCK is a hard-
constrained clustering. MPCK and LCVQE are state-of-the-art
soft-constrained clustering methods.

The evaluation examined the change in the purity of the cluster
while varying the number of labeled samples. Since the samples

in the experiment had been labeled by medical experts, I used
the labels for R percent of the samples to give the constraints and
used the remaining samples to compute the purity of the clus-
tering results. Specifically, first, R percent of samples from the
dataset were randomly picked. Then, to generate the must-link
set, one anchor sample was randomly picked for each class, and
the must-link constraints were put between the anchor sample and
the remaining samples for each class. In addition, to generate the
cannot-link set, one sample was randomly picked for each class,
and the cannot-link constraints were attached to all combinations
of the picked samples.

For an ablation study, I performed the proposed method with-
out the must-link constraints. In this experiment, the parameter ω
of the penalty terms was set to 50. To confirm the robustness for
the ratio of the labeled samples to the total samples, R, and the
number of clusters K, I conducted the clustering while varying
K and R (K = 50, 100 and R = 1%, 3%, 5%). The proposed
method was implemented in MATLAB, and the experiment was
run on a computer with the Intel Xeon E5-2620 CPU and 256GB
of memory.
2.6.3 Clustering Results

Table 4 shows the results of the quantitative performance eval-
uation. The proposed method achieved the best performance un-
der all conditions. Except for the case of K = 50, R = 1%, it
achieved over 0.7 in the prominent-purity. This result indicated
that 70% of the samples in the prominent-clusters obtained by the
proposed method could be given the correct label. Therefore, in
the actual labeling operation for the prominent-cluster obtained
from the proposed method, the annotator can complete one label-
ing operation by removing 30% of the samples in the cluster and
labeling the remaining samples once. The removal operation is
relatively easy because these samples are a minority in the cluster
and are easy to find. From this result, it can be confirmed that the
group-based labeling by the proposed method is more efficient
than the general labeling process in which each sample is labeled
individually, and it is also more efficient than the group-based la-
beling by the comparative method. This level of prominent-purity
is high enough to reduce the time required for the labeling task. In
particular, when K = 100, and R = 1%, the prominent-purity of
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Table 4: Quantitative performance evaluation for constrained clustering with prominent-purity and prominent-recall.

Metric Conditions KM BOCK MPCK LCVQE
Proposed w/o

must link Proposed

Prominent- K=100, R= 1% 0.602 0.627 0.421 0.573 0.658 0.715
purity K=100, R= 3% 0.726 0.673 0.544 0.660 0.712 0.789

K=100, R= 5% 0.681 0.716 0.494 0.587 0.747 0.747
K=50, R= 1% 0.623 0.549 0.369 0.616 0.517 0.660
K=50, R= 3% 0.668 0.648 0.521 0.636 0.651 0.727
K=50, R= 5% 0.637 0.694 0.498 0.643 0.662 0.702

Prominent- K=100, R= 1% 0.132 0.138 0.109 0.122 0.147 0.159
recall K=100, R= 3% 0.156 0.167 0.147 0.155 0.158 0.179

K=100, R= 5% 0.162 0.169 0.170 0.159 0.174 0.174
K=50, R= 1% 0.254 0.230 0.170 0.230 0.218 0.270
K=50, R= 3% 0.287 0.281 0.263 0.269 0.273 0.310
K=50, R= 5% 0.262 0.296 0.258 0.279 0.295 0.297

the proposed method shows an 8% improvement over the second-
best, BOCK. Moreover, it achieved the best prominent-recall un-
der all conditions. In the situation of labeling the stomach dataset
with a group-based labeling strategy, when K = 100, and R = 1%,
the labeling utilizing the proposed method can obtain about 240
more labeled images than the second-best method, BOCK. This
difference affects the efficiency of the actual labeling operation.
Table 5 shows the results of the purity evaluation. Since the pro-
posed method was superior to KM under all conditions, its soft-
constrained clustering worked effectively to improve the purity
of the clusters. The proposed method was the only method that
improved KM under all conditions. It showed relatively good per-
formance although several conventional methods outperformed it
under some conditions. However, in the evaluation focusing on
prominent clusters, the proposed method achieved the best perfor-
mance under all conditions, so it does not become a problem in
the labeling process considered in this work. I confirmed signif-
icant differences between the proposed method and comparative
methods in most cases according to paired McNemar’s test that
was corrected based on the Holm method, performed at a signifi-
cance level of 0.05. When K = 100, significant differences were
not confirmed in some cases, but as mentioned above, the pro-
posed method is effective because the number of labeled samples
increases in the assumed labeling process that gives a label to a
prominent cluster.

The average computational time for clustering over 10,000 im-
ages was 14s for KM, 1,119s for BOCK, 10s for MPCK, 1,824s
for LCVQE, and 130s for the proposed method. The proposed
method was much faster than the state-of-the-art of the con-
strained clustering method and soft-constrained method. The
computational cost of the proposed method is thus low enough
for group-based labeling.

Figure 6 shows the clustering results when K and R were set to
50 and 0.03, respectively. Figs. 6(b) and (c) show the prominent
Fundus clusters, which contain the most Fundus images obtained
by the proposed method and BOCK. In the scatter plot, green
and magenta dots indicate true positives and false-positives for
Fundus. The plot confirms that the samples in the cluster ob-
tained from the proposed method were closer to each other than
the samples in the cluster obtained from BOCK because the pro-
posed method allows the violation of the must-link constraints.
The images in Figure 6(c) show the false-positive images in the
prominent Fundus cluster obtained from BOCK. The prominent-

cluster contained these false-positive images that were very sim-
ilar to Fundus images because BOCK does not assume that the
sample distribution for a class is multimodal. In contrast, the pro-
posed method assumes that the sample distribution of a class is
multimodal and can reduce the effect of the inappropriate con-
straints. Therefore, the proposed method obtained the prominent
Fundus cluster with fewer false-positive images than the BOCK
result, as shown in Figure 6(b).

2.7 Evaluation of Self and Soft-Constrained Clustering
2.7.1 Dataset

I conducted experiments using two large-scale endoscopic im-
age datasets to evaluate the self and soft-constrained clustering
method. The first dataset (hereinafter, referred to as the esopha-
gogastroduodenoscopy (EGD) dataset) is comprised of 500 EGD
image sequences collected from Kyoto Second Red Cross Hospi-
tal, and the total number of images is 15,394. The second dataset
(hereinafter, referred to as the colon dataset) is comprised of 388
colonoscopy image sequences collected from Kyoto Second Red
Cross Hospital, and the total number of samples is 10,265. Each
image sequence was taken in a single examination. Therefore,
the EGD dataset contains 500 examination results, and the colon
dataset contains 333 examination results.

For the performance evaluation, I had expert endoscopists label
the correct class of each image. The classes of these datasets are
listed in Table 3. To make the feature vector, DenseNet201 [47]
pre-trained by ImageNet was used to extract 1,920-dimensional
feature values from the original RGB image (224 × 224 pixels).
The stomach dataset used in Section 2.6 was not used in this ex-
periment because it does not have temporal ordering information.
2.7.2 Experimental Conditions

I evaluated the purity of the clusters obtained by the proposed
method. Since the dataset in this experiment has temporal order-
ing information, I imposed a sequence-based constraint between
all temporally adjacent samples. Unlike the experiment in Sec-
tion 2.6, I did not use true labels to provide the constraints; I used
all of the samples to compute the purity of the clusters.

In contrast to soft-constrained clustering in which a small num-
ber of class labels were given, the self and soft-constrained clus-
tering did not have any ground truth for the class labels, because
the constraints were generated from the temporal ordering in-
formation without any labeling. Thus, I could not estimate the
prominent cluster for each class in the group-based labeling. In
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Table 5: Quantitative performance evaluation using purity to confirm the validity of the constraints. If the value of the comparative method is
marked with an asterisk, there is significant difference between the proposed method and that method.

Metric Conditions KM BOCK MPCK LCVQE Proposed w/o
must link

Proposed

Purity K=100, R= 1% 0.674∗ 0.723∗ 0.663∗ 0.698 0.708 0.707
K=100, R= 3% 0.712∗ 0.709∗ 0.647∗ 0.698∗ 0.717 0.724
K=100, R= 5% 0.683∗ 0.724 0.661∗ 0.715 0.705∗ 0.727
K=50, R= 1% 0.716∗ 0.686∗ 0.606∗ 0.732∗ 0.708∗ 0.718
K=50, R= 3% 0.738∗ 0.684∗ 0.613∗ 0.712∗ 0.715∗ 0.755
K=50, R= 5% 0.696∗ 0.732∗ 0.603∗ 0.729∗ 0.704∗ 0.718

∗: p < 0.05

Must-link Constraints True Positive (Fundus) False Positive (Others)

(a) Ground truth (c) Prominent cluster of Fundus
(BOCK)

(b) Prominent cluster of Fundus
(Proposed)

Class:03

Fig. 6: Clustering result for K = 50 and R = 0.03. I used t-SNE [49] for these two-dimensional visualizations. (a) Distribution of samples whose
true label is “Fundus”. Green dots indicate unlabeled samples, and red ones indicate labeled samples that were used as must-link constraints.
(b) Prominent cluster of Fundus generated by the proposed method and (c) prominent cluster of Fundus generated by BOCK [34]. In (b)
and (c), magenta dots indicate samples from other classes. The images in (a), and (c) are Fundus image example, and non-Fundus image
example, respectively.

this case, I consider that it is better if the purity of every cluster
is high. Therefore, I evaluated the (traditional) purity instead of
prominent-purity.

I compared the proposed method with the same ones described
in Section 2.6 except for BOCK (hard-constraints) since if I sim-
ply generated hard constraints from the temporal ordering infor-
mation, all images in a sequence would belong to the same clus-
ter, and this is obviously wrong. In addition, to investigate the
influence of the parameter ω, I varied ω from 1 to 30. The pro-
posed method was implemented in MATLAB and, the experiment
was run on a computer with the Intel Core i9-9980XE and 64GB
of memory.
2.7.3 Clustering Results

Table 6 shows the purity for each method for two value of K.
To show the robustness of the hyper-parameter ω, the table lists
the performance of the worst and best cases when I changed ω.
The proposed method using the best ω outperformed the other
methods; even when I used the worst ω, the purity of the pro-
posed method was slightly better than those of the other methods.
In contrast, the conventional soft-constrained clustering methods
were worse than KM. These conventional methods adversely af-
fected purity because they assume that some improper constraints
are eliminated, and the samples are clustered. In contrast, the
proposed method worked well under these constraints because it
assumed that the data distribution is often multimodal and the
distant samples are given the constraint. In the situation of label-
ing the EGD dataset with a group-based labeling strategy, when
K = 30, the labeling utilizing the proposed method can obtain
about 266 more labeled images than the second-best, KM. This

result shows that by using the proposed method, the correct la-
bels can be given to about 2% of the images in the dataset in one
labeling operation without additional annotation. Therefore, the
proposed method is more effective in accelerating the labeling
process than the comparison method. Needless to say, the cost
of this labeling process is low compared to the general labeling
process. In addition, I confirmed significant differences between
the proposed method and the comparative methods according to
paired McNemar’s test, which was corrected based on the Holm
method, performed at a significance level of 0.05.

Figure 7 shows the cluster assignment results of KM and the
proposed method with ω = 10, 20, 30, together with the ground-
truth sequence. In this figure, the vertical partitions indicate the
timing when the assigned cluster changes. For example, in the re-
sults of the proposed method with ω = 10, the initial two images
assigned to the same cluster are separated by a black line from the
next two images, which are assigned to a different cluster. It can
be seen that the number of adjacent images belonging to the same
cluster increases with ω, and the proposed method preferentially
assign samples with similar appearances, such as the third and
fourth samples, to the same cluster. As a result, the purity of each
sequence cluster improved.

Figure 8 is a quantitative evaluation showing the effect of
changing the parameter ω. Here, the proposed method outper-
formed KM under all conditions, even though the constraints
were generated in an unsupervised manner from the temporal
ordering information. In particular, in Figure 8(a), the pro-
posed method with K = 15, 5 ≤ ω outperformed KM with
K = 30. Moreover, in Figure 8(b), the proposed method with
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Table 6: Quantitative performance evaluation of self and soft-constrained clustering utilizing sequence-based constraints, as measured by purity. If
the value of the comparative method is marked with an asterisk, there is a significant difference between the proposed method and that
method.

Dataset Conditions KM MPCK LCVQE
Proposed w/o

worst ω
Proposed

best ω
EGD dataset K=30 0.8645∗ 0.6399∗ 0.8484∗ 0.8660∗ 0.8818

K=15 0.8583∗ 0.6399∗ 0.8303∗ 0.8597∗ 0.8770
Colon dataset K=30 0.6967∗ 0.4334∗ 0.6728∗ 0.6996∗ 0.7164

K=15 0.6819∗ 0.4341∗ 0.6760∗ 0.6831∗ 0.6940
∗: p < 0.05
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Fig. 7: Example of the cluster switching point determined by the proposed method when the parameter ω changed in the experiment on the EGD
dataset. The color of the class label bar indicates the type of class label. The vertical black lines in the bar of each method indicate cluster
label switching points.

0.84
0.85
0.86
0.87
0.88
0.89

1 3 5 7 9 11131517192123252729

Pu
rit

y

Parameter ω
Self-const. (K=15) KM (K=15)
Self-const. (K=30) KM (K=30)

(a) EGD dataset result

0.66
0.67
0.68
0.69
0.70
0.71
0.72

1 3 5 7 9 11131517192123252729

Pu
rit

y

Parameter ω
Self-const. (K=15) KM (K=15)
Self-const. (K=30) KM (K=30)

(b) Colon dataset result

Fig. 8: Purity of the proposed method versus ω.

K = 15, 13 ≤ ω ≤ 20 approached the performance of KM when
K = 30. These results show that setting the parameter ω properly
can significantly improve clustering performance.

3. Semi-Supervised Learning Using Prior
Knowledge of Bio-Medical Data

3.1 Background
In the classification of ulcerative colitis (UC) using deep neural

networks, where endoscopic images are classified into the lesion
and normal classes, it is difficult to collect a sufficient number of
labeled images because the annotation requires significant effort
by medical experts. UC is an inflammatory bowel disease that
causes inflammation and ulcers in the colon. Specialist knowl-
edge is required to annotate UC because texture features, such as
bleeding, visible vascular patterns, and ulcers, should be captured
among the image appearances that drastically vary depending on
location in the colon to detect UC.

Semi-supervised learning methods [11, 19, 20, 50] have been
used to train classifiers based on a limited number of labeled im-
ages, involving the use of both labeled and unlabeled images. If a
classifier with a moderate classification performance is obtained
with few labeled data, the performance of a classifier can be fur-
ther improved by applying these semi-supervised learning meth-

ods. However, existing semi-supervised learning methods do not
show satisfactory performance for UC classification because they
implicitly assume that the major appearance of images is deter-
mined by the classification target class, whereas the major ap-
pearance of UC images is determined by the location in the colon,
not by the disease condition.

Incorporating domain-dependent knowledge can also compen-
sate for the lack of labeled data. In endoscopic images, we can
utilize two types of prior knowledge: location information and
temporal ordering information, that is, the order in which the
endoscopic images were captured. Location information can be
obtained easily by tracking the movement of the endoscope dur-
ing the examination [51, 52], with the rough appearance of endo-
scopic images characterized by their location. Endoscopic images
are acquired in sequence while the endoscope is moved through
the colon. Therefore, the temporal ordering information is read-
ily available, and temporally adjacent images tend to belong to
the same UC label. If the above information can be incorpo-
rated into semi-supervised learning, more accurate and reliable
networks for UC classification can be developed.

In this study, I propose a semi-supervised learning method for
UC classification that utilizes location and temporal ordering in-
formation obtained from endoscopic images. Figure 9 shows the
underlying concept for the proposed method. In the proposed
method, a UC classifier is trained with incomplete UC labels,
whereas the location and ordering information are available. By
utilizing the location information, I aim to improve UC classifi-
cation performance by simultaneously extracting the UC and lo-
cation features from endoscopic images. I introduce disentangled
representation learning [23, 24] to effectively embed the UC and
location features into the feature space separately. To compensate
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Fig. 9: Underlying concept for the proposed method. The objective of the study is to train an ulcerative colitis (UC) classifier with incomplete UC
labels. The order and location are used as the guiding information (RC: right colon. LC: left colon. Re: rectum).

for the lack of UC-labeled data using temporal ordering informa-
tion, I formulated the ordinal loss, which is an objective function
that brings temporally adjacent images closer in the feature space.

The contributions of this study are as follows:
• I propose a semi-supervised learning method that utilizes the

location and temporal ordering information for UC classifi-
cation. The proposed method introduces disentangled repre-
sentation learning using location information to extract UC
classification features that are separated from the location
features.

• I formulate an objective function for order-guided learning
to utilize temporal ordering information of endoscopic im-
ages. Order-guided learning can obtain the effective feature
for classifying UC from unlabeled images by considering the
relationship between the temporally adjacent images.

3.2 Related Work
Semi-supervised learning methods that utilize unlabeled sam-

ples efficiently have been reported in the training of classifiers
when limited labeled data are available [11, 19, 20, 50]. Lee [19]
proposed a method called Pseudo-Label, which uses the class pre-
dicted by the trained classifier as the ground-truth for unlabeled
samples. Despite its simplicity, this method improves the classi-
fication performance in situations where labeled images are lim-
ited. Sohn et al. [20] proposed FixMatch, which improves the
classification performance by making the predictions for weakly
and strongly augmented unlabeled images closer during training.
These semi-supervised learning methods work well when a clas-
sifier with a moderate classification performance has already been
obtained using limited labels. However, in UC classification,
which requires the learning of texture features from endoscopic
images whose appearance varies depending on imaging location,
it is difficult to obtain a classifier with a moderate classification
performance using limited labeled endoscopic images, and ap-
plying these methods to UC classifications may not improve clas-
sification performance. Therefore, I propose a semi-supervised
learning method that does not directly use the prediction results
returned by a classifier trained by limited-labeled data, but utilizes
two additional features: the location and the temporal ordering.

Several methods that utilize the temporal ordering information
of images have been reported [21, 22, 53]. For example, Cao et
el. proposed Temporal-Cycle Consistency (TCC), which is a self-
supervised learning method that utilizes temporal alignment be-
tween sequences [21]. The TCC yields good image feature rep-
resentation by maximizing the number of points where the tem-

poral alignment matches. Dwibedi et al. [22] proposed a few-
shot video classification method that utilizes temporal alignment
between labeled and unlabeled video, then improved the video
classification accuracy by minimizing the distance between tem-
porally aligned frames. Moreover, a method for segmenting en-
doscopic image sequences has been proposed [53]. By utiliz-
ing the prior knowledge that temporally adjacent images tend to
belong to the same class, this method segments an image se-
quence without requiring additional annotation. However, the
methods proposed [21, 22] are not suitable for the task of this
work, where involves a sequence with indefinite class transitions,
because they assume that the class transitions in the sequence
are the same. Furthermore, the method proposed in [53], which
assumes segmentation of normal organ image sequences, is not
suitable for the task of this work where the target image sequence
consists of images of both normal and inflamed organs. In the
proposed method, temporal ordering information is used to im-
plement order-guided learning, which brings together temporal
adjacency images that tend to belong to the same UC class, thus
obtaining a good feature representation for detecting UC in the
feature space.

3.3 Order-Guided Disentangled Representation Learning
The classification of UC using deep neural networks trained

by general learning methods is difficult for two reasons. First, the
appearances of the endoscopic images vary dynamically depend-
ing on location in the colon, whereas UC is characterized by the
texture of the colon surface. Second, the number of UC-labeled
images is limited because annotating UC labels to a large number
of images requires significant effort by medical experts.

To overcome these difficulties, the proposed method intro-
duces disentangled representation learning and order-guided
learning. Figure 10 shows the overview of the proposed method.
In disentangled representation learning using location informa-
tion, I disentangle the image features into features for UC-
dependent and location-dependent to mitigate the worse effect
from the various appearance depending on the location. Order-
guided learning utilizes the characteristics of an endoscopic im-
age sequence in which temporally adjacent images tend to be-
long to the same class. I formulated an objective function that
represents this characteristic and employed it during learning to
address the limitation of the UC-labeled images.
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Fig. 10: Overview of the proposed method. (a) Disentanglement into the UC feature zu and the location feature zloc. (b) Ordinal loss for order-
guided learning. (c) Effect of order-guided learning.

3.4 Disentangled Representation Learning Using Location
Information

Disentangled representation learning for the proposed method
aims to separate the image features into UC and location-
dependent features. These features are obtained via multi-task
learning of UC and location classification. Along with the train-
ing of classifiers for UC and location classification tasks, the fea-
ture for one task is learned to fool the classifier for the other
task; that is, the UC-dependent feature is learned to be non-
discriminative with respect to location classification, and vice
versa.

The network structure for learning disentangled representa-
tions is shown in Figure 10(a). This network has a hierarchical
structure in which a feature extraction module branches into two
task-specific modules, each of which further branches into two
classification modules. The feature extraction module Eenc ex-
tracts a common feature vector for UC and location classification
from the input image. The task-specific modules Bu and Bloc ex-
tract the UC feature zu and the location feature zloc, which are
disentangled features for UC and location classification. Out of
four classification modules, the modules Cu and Cloc are used for
UC and location classification, respectively, whereas Du and Dloc

are used to learn the disentangled representations.
In the left branch of Figure 10(a), the network obtains the

prediction results for UC classes, pu, as the posterior probabil-
ities, based on the disentangled UC feature zu through learning.
Hereinafter, I explain only the training of the left branch in de-
tail because that of the right branch can be formulated by simply
swapping the subscripts “loc” and “u” in the symbols for the left
branch.

Given a set of N image sequences and corresponding location
class labels {x(1:Ti)

i , l(1:Ti)
i }Ni=1 and a set of limited UC class labels

{uk
j | ( j, k) ∈ U}, where Ti is the number of images in the i-th

image sequence and uk
j is the UC class label corresponding to the

j-th image in the k-th sequence, the training is performed based
on three losses: classification loss Lc

u, discriminative loss Ld
loc,

and adversarial loss Ladv
loc . To learn the UC classification, I mini-

mize the classification loss Lc
u, which is computed by taking the

cross-entropy between the UC class label ut
i and the UC class

prediction pu(xt
i) that is output from Cu. The discriminative loss

Ld
loc and adversarial loss Ladv

loc are used to learn the disentangled
representation, and are formulated as follows:

Ld
loc(xt

i) =

−

Kloc∑
j=1

lti log d j
loc(xt

i), L
adv
loc (xt

i) =
Kloc∑
j=1

log d j
loc(xt

i), (7)

where dloc(xt
i) is the location class prediction estimated by Dloc.

By minimizing the discriminative loss Ld
loc, the classification

module Dloc is trained to classify the location. In contrast, the
minimization of the adversarial loss Ladv

loc results in the UC fea-
ture zu that is non-discriminative with respect to the location.
Note that Ld

loc is back-propagated only to Dloc, whereas the pa-
rameters of Dloc are frozen during the back-propagation of Ladv

loc .
As mentioned above, some images are not labeled for UC classi-
fication in this problem. Therefore, the classification loss Lc

u and
the disentangle losses Ladv

u and Ld
u are ignored for UC-unlabeled

images.

3.5 Order-Guided Learning
Order-guided learning considers the relationship between tem-

porally adjacent images, as shown in Figure 10(b). Since an en-
doscopic image is more likely to belong to the same UC class
as its temporally adjacent images than the UC class of temporally
distant images, the UC-dependent features of temporally adjacent
images should be close to each other. To incorporate this assump-
tion into learning of the network, the ordinal loss for order-guided
learning is formulated as:

Lseq(xt
i,x

t+1
i ,x

t+2
i )=[

||zu(xt
i)−zu(xt+1

i )||22−||zu(xt
i) − zu(xt+2

i )||22+ε
]
+
, (8)

where zu(xt
i) is a UC feature vector for the sample xt

i and is ex-
tracted via Eenc and Bu, [·]+ is a function that returns zero for
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a negative input and outputs the input directly otherwise, and ε
is a margin that controls the degree of discrepancy between two
temporally separated samples.

The UC features of temporally adjacent samples get closer by
updating the network with the order-guided learning, as shown in
Figure 10(c). This warping in the UC feature space functions as a
regularization that allows the network to make more correct pre-
dictions because the temporally adjacent images tend to belong
to the same UC class. The order-guided learning can be applied
without the UC label, and therefore it is also effective for the UC-
unlabeled images.

3.6 Experiments
I conducted the UC classification experiment to evaluate the

validity of the proposed method. In the experiment, I used an
endoscopic image dataset collected from the Kyoto Second Red
Cross Hospital. Participating patients were informed of the aim
of the study and provided written informed consent before partic-
ipating in the trial. The experiment was approved by the Ethics
Committee of the Kyoto Second Red Cross Hospital.
3.6.1 Dataset

The dataset consists of 388 endoscopic image sequences, each
of which contains a different number of images, comprising
10,262 images in total. UC and location labels were attached
to each image based on annotations by medical experts. Out of
10,262 images, 6,678 were labeled as UC (positive), and the re-
maining 3,584 were normal (negative). There were three classes
for the location label: right colon, left colon, and rectum. In the
experiments, the dataset was randomly split into image sequence
units, and 7,183, 2,052, and 1,027 images were used as training,
validation, and test set, respectively. To simulate the limitation of
the UC-labeled images, the labeled image ratio R for the training
set used by the semi-supervised learning methods was set to 0.1.
3.6.2 Comparative Method

I compared the proposed method with two semi-supervised
learning methods. One is the Pseudo-Label [19], which is one of
the famous semi-supervised learning methods. The other is Fix-
Match [20], which is the state-of-the-art semi-supervised learning
method for the general image classification task. Since the dis-
tribution of data differs greatly between general and endoscopic
images, I changed the details of FixMach to maximize its perfor-
mance for UC classification. Specifically, strong augmentation
was changed to weak augmentation, and weak augmentation was
changed to rotation-only augmentation for processing unlabeled
images. I also compared the proposed method with two classi-
fiers trained with only labeled images in the training set with the
labeled image ratio R = 0.1 and 1.0.

In addition, I conducted an ablation study to evaluate the effec-
tiveness of the location label, disentangled representation learn-
ing, and order-guided learning. The best network parameter for
each method was determined based on the accuracy of the valida-
tion set. I used precision, recall, F1 score, specificity, and accu-
racy as the performance measures.
3.6.3 Experimental Results

Table 7 shows the result of the quantitative performance eval-
uation for each method. Excluding specificity, the proposed

method achieved the best performance for all performance mea-
sures. Although the specificity of the proposed method was the
third-best, it was hardly different from that of the fully super-
vised classification. Moreover, I confirmed that the proposed
method improved all measures of the classifier trained using only
UC-labeled images in the training set with R = 0.1. In par-
ticular, the improvement in recall was confirmed only in the
proposed method. Therefore, disentangled representation learn-
ing and order-guided learning, which use additional information
other than UC information, were effective for improving UC clas-
sification performance.

Table 8 shows the results of the ablation study. The results
demonstrated that each element of the proposed method was ef-
fective for improving the UC classification. The order-guided
learning was effective for improving the precision and recall.
Since the precision and recall were further improved by using
the order-guided learning and disentangled representation learn-
ing simultaneously, it was confirmed that feature separation by
disentangled representation learning is useful for the effective uti-
lization of temporal ordering information. In contrast, when only
location information was used, each score were improved. Since
there is a correlation between the transitions between location and
UC labels, the performance of the proposed method on UC clas-
sification is slightly improved as the proposed method learns to
classify location.

To demonstrate the effect of the order-guided learning, the ex-
amples of prediction results are shown in Figure 11. In this figure,
the prediction results from the proposed method with the order-
guided learning for temporally adjacent images tend to belong
to the same class. For example, the proposed method predicted
the first and second images from the right in Figure 11(b) as
the same class, whereas the proposed method without the order-
guided learning predicted them as different classes.

The limitations of the proposed method are as follows. First,
the proposed method is optimized from several objective func-
tions, and tuning their weights is time-consuming task. In partic-
ular, if the weights of the objective functions for the disentangled
representation learning are inappropriate, the feature space suit-
able for UC classification cannot be obtained. Second, since the
proposed method is provided a pair of images as input data for
training, the model size is larger and the training time is longer
than the existing semi-supervised learning methods.

4. Conclusion and Future Work
4.1 Conclusion

This paper proposed two approaches to solve the problem of
limited annotation in bio-medical data analysis tasks.

I proposed a new constrained clustering method suitable for
bio-medical data clustering. The appearance of a medical image
often changes even in the same class due to some factors, such
as camera angle and light source intensity. When the must-link
is attached to the pair of samples that their appearance differs
greatly, satisfying this link results in an unexpectedly large clus-
ter with low purity. Therefore, the proposed method allows a
violation of must-links to handle the above issue. In the experi-
ment, the proposed method achieved higher prominent-purity and
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Table 7: Quantitative performance evaluation. Labeled image ratio R represents the ratio of the UC-labeled images in the training set.
Method R Precision Recall F1 Specificity Accuracy
Supervised learning 1.0 0.805 0.849 0.826 0.902 0.885

0.1 0.692 0.671 0.681 0.858 0.797
Pseudo-Label [19] 0.1 0.752 0.613 0.676 0.904 0.811
FixMatch [20] 0.1 0.752 0.468 0.577 0.927 0.779
Proposed 0.1 0.776 0.731 0.753 0.899 0.845

Table 8: Results of the ablation study with order-guided learning (Order), the location label (Location), and disentangled representation learning
(Disentangle)

Order Location Disentangle Precision Recall F1 Specificity Accuracy
0.692 0.671 0.681 0.858 0.797

✓ 0.752 0.686 0.717 0.892 0.826
✓ 0.795 0.680 0.733 0.917 0.840

✓ ✓ 0.789 0.622 0.696 0.921 0.825
✓ ✓ ✓ 0.776 0.731 0.753 0.899 0.845

higher prominent-recall, compared with several state-of-the-art
soft-constrained clustering methods. In addition, I proposed a self
and soft-constrained clustering method, where self-constraints
are defined as prior knowledge that temporally adjacent endo-
scopic images tend to belong to the same class. The experimen-
tal results showed that the proposed method improved cluster-
ing performance compared to the ordinary clustering method and
several soft-constrained clustering methods that utilize the self-
constraints.

I also proposed a semi-supervised learning method, called
the order-guided disentangled representation learning method,
for learning ulcerative colitis (UC) classification. The pro-
posed method utilizes the location information and image cap-
turing order of endoscopic images. The proposed method per-
formed disentangled representation learning that separates the
UC-dependent and location-dependent features with image cap-
turing order that is effective for learning UC classification. The
experiments using an endoscopic image dataset demonstrated
that the proposed method outperforms several existing semi-
supervised learning methods.

4.2 Future Work
Future work of this study is listed as follows:
• For the proposed constrained clustering method, I will fur-

ther analyze the relationship between the purity of the clus-
ters and the hyper-parameter that determines the strength of
the self-constraint. I will extend the proposed method to
other bio-medical data clustering tasks. In addition, I will
consider the introduction of the proposed method to repre-
sentation learning using clustering results for deep learning
techniques.

• For the proposed semi-supervised learning method, I will fo-
cus on extending the proposed method to other bio-medical
data analysis tasks, such as the detection of polyps and can-
cer. In addition, I will extend the proposed method to a clas-
sification method using an image capturing order at the test-
ing time.
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