
Electronic Preprint for Journal of Information Processing Vol.29

Regular Paper

Real-time Container Integrity Monitoring
for Large-Scale Kubernetes Cluster

Hirokuni Kitahara1,a) Kugamoorthy Gajananan1,b) YujiWatanabe1,c)

Received: November 30, 2020, Accepted: June 7, 2021

Abstract: Container integrity monitoring is defined as a key requirement for regulatory compliance such as PCI-DSS,
in which any unexpected changes such as file updates or program runs must be logged for later audit. System call mon-
itoring provides comprehensive monitoring of such change events on container since it may suffer from large amount
of false alarms unless well-defined allowlist rules are coordinated before deploying a container. Defining such a com-
prehensive allowlist is not feasible especially when managing various kinds of application workloads in large-scale
enterprise cluster. We propose a new approach for identifying real anomalies in system call events effectively without
relying on any predefined allowlist configuration in this paper. Our novel filtering algorithm based on the knowledge
acquired autonomously from Kubernetes cluster control plane reduces 99.999% of noise effectively and distills only
abnormal events in real time. Furthermore, we define concrete criteria for highly-scalable container integrity monitor-
ing and verify the implementation of proposing filtering method that has actual high scalability while maintaining its
detection capability. Our experiment with real applications on around 3,800 containers demonstrates its effectiveness
even on large-scale clusters, and we clarified how detected events are triggered by user operation.

Keywords: container integrity, Kubernetes, allowlist

1. Introduction

System integrity monitoring refers to a function that detects
and notifies the administrator of events such as file changes and
deletions that should not be rewritten in service operations and
process executions that should not be executed. It is an impor-
tant part of several compliance and audit requirements including
PCI [4], FISMA [18], and HIPAA [18]. All changes need to be
evaluated (after accounting for known changes to be expected in
the container based on a allowlisted profile) by the system admin-
istrator for further investigation.

To deal with the requirement, a mechanism for detecting
changes of system state must be put in place in the system. A
common approach for host system is to introduce a monitoring
agent on the host OS, and a number of known File Integrity Mon-
itoring (FIM) tools such as Tripwire [12] or OSSEC [15] have
been known for host integrity monitoring, while container in-
tegrity monitoring requires a different approach called “agent-
less” monitoring since it is much harder to introduce agents to
a container with a shorter life-cycle than the host. There are two
types of approaches to monitor such changes in container: - 1) de-
tecting differences between periodical scanning, or 2) continuous
system call monitoring. For the first approach, the crawler run-
ning on the host monitors the state of containers running on the
same host periodically, and checks difference in states between
crawls. The periodic scanning approach provides comprehen-

1 IBM Research - Tokyo, Chuo, Tokyo 103–8510, Japan
a) hirokuni.kitahara1@ibm.com
b) gajan@jp.ibm.com
c) muew@jp.ibm.com

sive detection of any changes of static state such as files with
very small overhead since it does not add to running cost during
idle time, while some information, such as program runs during
crawls or process which causes the file changes, cannot be iden-
tified directly.

System call monitoring addresses this issue in a different ap-
proach. System call events include all OS-level system call in-
formation such as file change/update/delete, program run/kill.
System call events in containers can be observed on host trans-
parently due to the nature of container. Monitoring system call
events on host provides comprehensive detection of any lowlevel
integrity events without touching containers, while the following
issues rise from its comprehensiveness and become even worse
especially in a large-scale cluster *1.
• Too many and too much detail in low-level events could in-

clude vast majority of events from expected behaviors of
container such as expected file changes (e.g., temporal files,
log files) or internal or regular program runs. This means
reported alerts may include a lot of false alarms.

• Too many events cause increase in resource usage such as
data bandwidth and storage in central server as audit log.

Such false alarms can be suppressed by applying allowlist
which accounts for known changes to be expected in a container,
but defining the allowlist configuration properly is not feasible be-
cause administrators may not know the full internal behavior of
all applications running on cluster especially in large-scale enter-
prise cluster where thousands of applications from different own-

*1 This paper is an extended version of a conference paper for IEEE Big-
Data 2020 accepted on Oct. 21, 2020. The 2 major extensions are per-
formance evaluation for scalability and analysis on detected results.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

ers are hosted and maintained by a few administrators. Further-
more, the task for defining a comprehensive allowlist is not easy
even for application developers and requires cumbersome manual
tasks with deep understanding of run-time behaviors.

In this paper, we propose a novel approach for highly scalable
container integrity monitoring using system call monitoring [8].
We do not rely on any predefined allowlist configuration, i.e., no
prior knowledge about container image for creating container. In-
stead, our approach leverages knowledge acquired from Kuber-
netes cluster control plane for constructing effective filtering. We
implement a new algorithm for accumulating multiple events with
a process tree to maximize the power of reduction by filtering.
The major part of aggregation and filtering are completed at each
node in a distributed manner, and so it minimizes the resource
usage for enabling this monitoring on a large-scale cluster. In ad-
dition to this, we provided specific criteria for evalutation about
scalability of container integrity monitoring from 3 perspectives
of processing delay, distribution and data size. In order to demon-
strate the effectiveness of the proposed method and to verify its
scalability, we conducted experiments on real application work-
loads running on Kubernetes cluster consisting of 3,800 contain-
ers (on average) on 160 nodes. We use Sysdig [2] Falco [6] for
monitoring events such as file update/delete/create, and process
exec. We observed the total amount of such events reached the
rate of 2.3 million events/hour, which resulted in 6 GB hourly
volume usage increase before applying the proposed approach.
Then, we deployed our proposed filtering on the cluster without
having any prior knowledge about deployed application. We con-
firmed it effectively distills only 3 events/hour of interest from
2.3 million in real-time with very limited resource usage, thus
successfully suppressing the vast majority of events (99.99988%)
only with the knowledge acquired autonomously from Kuber-
netes cluster control plane via standard Kubernetes API. For its
correctness, we conducted an interview with a cluster adminis-
trator of the target cluster, and verified that all of detected events
are real anomalies to be reported. This paper gives the first spe-
cific construction method for achieving that level of suppression
of events in container integrity monitoring without relying on any
predefined allowlist.

2. Definition and Goals

We briefly describe relevant technologies used in this work and
define some terminologies to describe our approach.

2.1 Container Orchestration System
In cloud context, containers are an approach to package an ap-

plication including their libraries, dependencies, configurations
and files. Containers share the same operating system kernel
when running on a host machine, and isolate the application pro-
cesses running in the container from the rest of the system [10].

Container orchestration systems are a framework for managing
life-cycle of containers at scale. Container orchestration systems
schedule containers across a cluster, scale those containers, and
manage their health over time. One could build a container or-
chestration system by clustering a group of hosts (aka nodes), ei-
ther physical or virtual machines and running containers [9]. For

Table 1 Types of system calls related to system integrity.

System Call Event Type Description
execve Process Process Execution

open, openat, mkdir, mkdirat File Create or Change File
link File Create Sympolic Link

unlink, unlinkat, rmdir, rmdirat File Delete File

instance, Kubernetes is a popular open source container orches-
tration system [14].

Container orchestration systems like Kubernetes provide a
mechanism called ‘Namespace’ which are logical partitions for
subdividing a cluster so that multiple applications can share a
cluster [14]. In a cluster, one could deploy a containerized ap-
plication in a Namespace. The containers that make up an appli-
cation are managed in units of in-app components called Pods.

The scope of our work is the integrity monitoring of contain-
ers which runs on Linux based hosts managed by a Kubernetes
cluster.

2.2 Container Monitoring
The system calls invoked by containers are processed as sys-

tem calls at the host, since containers and the host they run on
share the same operating system kernel. Therefore, by observing
system calls on hosts, one could monitor system calls generated
by containers, without making any changes to them. For instance,
there are tools like Sysdig Falco [2], [6] that exploit this approach
to monitor the actual behavior of host systems and containers.

In this work, we use Falco as the underlying technology for
system level monitoring of containers.

Falco is used only for getting various attributes like process id
and container metadata of a system call event in this paper, and
some subsequent filtering and grouping methods are our contri-
bution work.

We introduce the filtering method of our proposal in Section 4.
In typical Linux systems, there are various kinds of system

calls. Among them, we focus on the system calls that are closely
related to system integrity. For instance, Table 1 lists the types of
system calls related to process execution and file changes.

2.3 Expected System Call Events
A container is created at run-time based on a container im-

age which includes a pre-defined program. This program starts
up and operates when the container is created on a host. The
program that runs on the container may launch a new process or
access a file. For example, let us assume a container that runs a
simple HTTP server which accepts incoming HTTP requests, per-
forms some operation and generates some log files. In such case,
one could detect system calls related to process execution and file
changes. However, these system calls are expected at the time of
building and distributing the container image and starting the con-
tainer. Therefore, these events are not our target for monitoring
integrity of containers. These type of events are called “expected
system call events” or more simplly “expected events”.

2.4 Mutation Events
Containers should be immutable. Immutable means that these

are not expected to be modified after startup during its service life

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

so there are no updates, patches, configuration changes. There-
fore, any operations from outside the container are prohibited. All
observed events should be expected system call events. Hence,
we define all events excepts the expected system call events as
mutation events which are the primary target of integrity moni-
toring for containers. For example, some file change events for
an attacker to install their own malicious application in a running
container are mutation events.

2.5 Goals of Our Proposed Approach
In large-scale clusters, a number of hosts (nodes) may exceeds

a thousand. In such clusters, as the applications are deployed
per Namespace, there would be a huge number of system calls
might occur. In such an environment, efficiently detecting muta-
tion events from a huge number of events is a challenging task.
Therefore, in this work, our goal is to efficiently exclude expected
events and detect mutation events from a huge number of system
call events observed in a large-scale cluster.

3. Rule-based Allowlist for Container In-
tegrity Monitoring

We describe the challenges of defining rule-based allowlists for
filtering expected events, especially in a large-scale cluster.

3.1 System Call Monitoring in Containers
We conducted a preliminary study to analyze what composition

of system call events could occur in a three node cluster. From
this study, we collected system call event data by monitoring the
cluster.

Figure 1 illustrates system call distribution in the data col-
lected over five days. Among 3.9 million events, almost 91%
of the events are of ‘execve’. In other words, 90% or more of the
system calls that occurred in the cluster were process events.
3.1.1 Scale of System Call Events in Kubernetes Cluster

Figure 2 reveals the amount of system call events monitored
per node and per namespace over time. A huge number of events
occured constantly at every node and the application running on
the cluster constantly generated system call events. It also illus-
trates that a huge amount of system call events constantly oc-
curred regardless of the content of the application. This means
that container operation always generated a large number of ex-

Fig. 1 Distribution of system calls.

pected events. Hence, we need to allowlist these container ex-
pected behavior events while monitoring integrity.

3.2 Allowlist of Process Events
From the preliminary study, which was monitoring all file re-

lated system calls and process related system calls on a cluster, we
found that over 90% of the events that occured in a cluster were
process events and file changes were triggered by some process
execution. The ratio of process executions and file changes de-
pends on actual application on each cluster, however, at least, all
file changes are triggered by some corresponding parent process
events.

Therefore, we will focus on process events in the rest of this
section.
3.2.1 Process Execution Commands

We studied frequently appear commands among the system
calls events observed. We collected the command string that
caused the event as the attribute value of the event. Table 2 pro-
vides a list of frequently appeared commands in the study envi-
ronment and their number of occurrences.

For example, we observed that the python command with
the highest number of times occurrence at a frequency of 130
events/min or more for 4 days. Process executions that happened
at such a high rate were obviously caused by some programs like
container expected programs or Kubernetes system. Those ma-
chinery events are candidates for filtering.
3.2.2 Converge of Frequent Commands

To create an allowlist based on frequently appearing com-
mands in events, we examined the top ten most frequently used
commands that were executed repeatedly tens of thousands to
hundreds of thousands times. It is likely that the high occurrence
frequency of a specific command was due to the fact that the pro-
cess defined as the operation of a container (i.e., the expected
event) repeatedly executed the command. If these frequent com-

Fig. 2 System call events over time for each node and namespace.

Table 2 Top 10 commands for process execution.

Command Count Percentage
python3 [filename A] 787,025 20.2%
[filename B] [option1] 307,532 7.9%
[filename B] [option2] 265,378 6.8%

sh [filename C] 206,304 5.3%
sv status [filename D] 176,864 4.5%
sv status [filename E] 176,864 4.5%
[filename F] [option 3] 133,217 3.4%
[filename G] [option 4] 130,495 3.3%

sh [option 5] 117,889 3.0%
sleep [option 6] 88,428 2.3%

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

mands correspond to expected events, we could use them as an
allowlist to exclude those commands as non-mutation events.

From the collected data, we observed that commands with
the highest frequency of appearance occupied the majority of all
events. In fact, the top 10 commands cover 61.6% and 100 com-
mands covered 95.5% of the total events observed. Therefore,
if the hypothesis (frequent command=expected event) holds, one
could consider occurrence frequency of commands executed to
prove effective in narrowing down candidates for mutation events
to some extent.
3.2.3 Limitations of Command Allowlist

Although the occurrence frequency of commands executed
could help to form an allowlist. In reality narrowing down muta-
tion events is not practical due to the following reasons.
• Static allowlist cannot filter commands that change at each

execution
• Updating the allowlist dynamically would generate false

negatives
In fact, including more frequent patterns in the allowlist leaves

a large amount of expected behavior events in the remaining
events.

For example, when the top 1,000 items are included in the al-
lowlist, a command pattern

httpserver -output 20200726*.log
is included in the allowlist as a frequent pattern, while the same
type of command

httpserver -output 20200727*.log
remains without being allowlisted.

The results from the investigation demonstrate the need for
an automated allowlisting mechanism as cluster administrators
would not know what applications would run on a cluster. In
addition, application developers may not comprehensively define
all patterns of commands executed in a container. Therefore, for
integrity monitoring of a cluster, an automated mechanism that
effectively filters expected events (i.e., generation of allowlist),
is indispensable, especially in a large-scale cluster where many
applications are deployed.

4. Proposed Approach (Auto Allowlisting)

The proposed method consists of the following three stages of
event filtering.
(1) Common Pattern Filter - Our approach considers that there

is a common pattern that does not depend on each container
image, among expected events. It specifies a common pat-
tern that can classify most of the events as the expected
event.

(2) Event Grouping - The expected events, which cannot be fil-
tered in (1), differ by application. Our approach consid-
ers most of these event patterns also should be allowlisted,
but they differ for each application. Therefore, our approach
applies event grouping to the rest of events by focusing on
the parent-child relationship between events. It specifies the
event that is the starting point of each group.

(3) Application Pattern Filter - Our approach applies the corre-
lation with the application configuration to the origin event
of the groups identified in (2). Then, it identifies the event

Fig. 3 Steps for effective event filtering.

Fig. 4 Distribution of process group IDs.

pattern originated by each application. The events filtered by
this pattern are the expected events too.

Figure 3 shows a conceptual diagram of the above three steps.
By the above steps, our approach could effectively filter

both the application-independent expected behavior and the
application-dependent expected behavior and extract only mu-
tation events. We describe the actual configuration method and
design guidelines for each step as below.

4.1 Common Pattern Filter
By applying the system call monitoring technique, one could

acquire information of the process id that generated the events.
Since each container normally has a unique process namespace,
the process ID number depends on the process execution status in
each container.

The process ID itself has no meaning as a allowlist condition.
However, system call monitoring could acquire the group ID of
the process executed in the container as well as the process ID.
This group ID represents the ID of the starting process of the pro-
cess tree. When we classify events by group ID, as shown in
Fig. 4, only the top 10 could cover about 50% of the total events.
Therefore, we investigate this process group ID and why some
specific process group IDs covers such portion of events in the
next section.
4.1.1 Mechanism on Common Pattern Filter

In containerizing an application using a container, each con-
tainer has only one application executed in the container. In other
words, each container would run only one application, and when
the application ends, the container would also stop operating.
Even though it is not impossible to execute multiple applications
like a conventional virtual machine, but it will become a zom-

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

bie process if the application terminates abnormally. This would
greatly reduce the merit of using the container. Such container
design is called single process per container.

With this design, we can represent the processes running in a
container as a process tree with a common ancestor. The process
group ID is common to the events in the tree. The most character-
istic example is group ID 1, which is shown as the most common
group ID in figrefvpgid. The events that occur from the container
expected behavior have a process group ID of 1.

In addition, it is possible to execute multiple processes from
one container as described above, there may be different groups
generated, which have group ID 1 as an origin. A typical example
is a process execution using the sv program of Linux. In this case,
the process tree executed from the program called runsv, which
is also used as a allowlist. On the other hand, the above “multi-
ple starting process container” could be created without runsv. A
small amount of pre-defined allowlists might be needed for these
type of cases.

Additionally, if attacker tampers with a container image to in-
ject their attack commands into the starting process, the attack
commands might hide from our proposal detection. To avoid
these type of attacks, the container image should be managed
properly and it should be protected in some additional ways such
as signature.

We describe the above process as pseudo code shown below.

Algorithm 1: Common Pattern Filter
Input: Event eall

Output: Filtered Event e f iltered

1 for i = 0 . . . eall.length do
2 f ilterOut = False

3 if ProcessGroupID(ei) == 1 then
4 f ilterOut = True

5 else
6 ep = GetParentProcess(ei)

7 for do
8 if GetParentProcess(ep) == runsv then
9 f ilterOut = True

10 break

11 if f ilterOut == False then
12 e f iltered .Add(ei)

13 return e f iltered

4.1.2 Verification in Test Environment
We have validated a common pattern filter using the test data

collect in a cluster consisting of three nodes, and about 43% of
the whole could be filtered by common pattern filter. This result
is almost equivalent to previous section, so we can conclude that a
common pattern filter could work as a filter for 40–50% of events
out of the call events for the entire system.

4.2 Event Grouping
For application dependent filtering in second stage of event

grouping, we perform event grouping by the following process.
We organize all the events that occurred in each container into a
process tree, and specify the starting event.

Our approach (1) sorts events by container (2) groups process

Table 3 Top 8 commands after common pattern filter & event grouping.

Command Count Configuration
[filename A] [option 1] 101,970 livenessProbe

sh [filename B] 71,577 livenessProbe
[filename C] [option 2] 66,994 readinessProbe
[filename D] [option 3] 51,067 readinessProbe

sh [option 4] 36,774 readinessProbe
test [filename E] 34,068 readinessProbe

[filename A] [option 5] 34,059 readinessProbe
sh [filename F] 30,656 readinessProbe

execution events and file change events as a process tree which
has a root process execution event above it and also has an off-
spring process and file events (3) using the parent process ID and
group ID to process all process events in process tree format.

4.3 Application Pattern Filter
4.3.1 Events Defined by Application

Table 3 shows the list of frequent commands for events re-
maining after Common Pattern Filter and Event Grouping. One
can see that there are multiple commands that are repeatedly ex-
ecuted in large numbers on the scale of hundreds of thousands
of times. Since the Common Pattern Filter already removed
the event pattern from a container, these frequent commands are
events that are caused by the Kubernetes internal components and
not by a container itself. We analyze each system configuration
information (Pod definition) for the frequent commands in Ta-
ble 3. One could see that all of these are commands defined by
the item “livenessProbe” or “readinessProbe” in the configuration
information.

Although Table 3 lists livenessProbe and readinessProbe, we
also find that the command string defined as ‘lifecycle.preStop’
was also detected in the same way.

We found that the 51.4% of commands are originated from
readinessProbe configuration, 48.4% are from livenessProbe and
0.01% are from lifecycle.Prestop. Other events were very small,
less than 0.01%.

Although it is different from the event due to the expected op-
eration of the container itself, it is an event that occurs by default
in the application settings and therefore we could treat them as
allowlist commands. There is a possibility that this probe con-
figuration is used for a malicious command injection if the con-
figuration is not correctly managed. In Kubernetes, this kind of
configuration is normally managed by role base access control
(RBAC), which defines what configuration a user can change. So,
in this paper, we assume probe commands have not been illegally
tampered and this is why we can filter out events that are triggered
by probe commands.
4.3.2 Mechanism on Application Pattern Filter

It turns out that there are a large number of commands defined
for items such as livenessProbe and readinessProbe. What do
these items mean in the pod definition? Table 4 shows the mean-
ing of each item and Pod definition. Note that lifecycle.postStart,
which may be detected as in lifecycle.preStop, is also shown in
the table.

The commands defined in this pod configuration information
are specified when creating a pod. The events generated from
them are preset to be executed as an application. Therefore, we

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table 4 Pod configurations related to system call events.

Configuration Purpose Frequency
livenessProbe Check container liveness repeat

readinessProbe Check container readiness repeat
lifecycle.preStop Execute finalize method once
lifecycle.postStart Execute initialize method once

Algorithm 2: Application Pattern Filter
Input: Event Groups gall

Output: Mutation Event Groups gmut

1 for i = 0 . . . gall.length do
2 Pi = GetApplicationDefinition(gi)

3 C = GetDefinedCommands(Pi)

4 f ilterOut = False

5 for j = 0 . . . C.length do
6 if GetCommand(gi) == C j then
7 f ilterOut = True

8 if f ilterOut == False then
9 gmut .Add(gi)

10 return gmut

could consider these events as part of expected behavior in the
container. Hence, we could add them to the allowlist condition
by referencing the configuration information.

We provide a pseudo-code for the process discussed in this sec-
tion, as shown in Algorithm 2. Our approach obtains Pod config-
uration information by using the Kubernetes API corresponding
to GetApplicationDefinition() in the pseudo code.
4.3.3 Verification in Test Environment

We verified the effect of Application Pattern Filter with the
event data collected in a 3-node cluster different from the above.
Similar to the previous section, the application-defined expected
behavior accounted for almost 100%, and other events were neg-
ligible at 0.05%.

Most of the events are livenessProbe (34.0%) and readi-
nessProbe (65.8%), and number of lifecycle.preStop is very small
(0.2%). This is due to the difference in the execution timing of
each item. We observe the same result in all environments.

Mutation events are the group of events that finally remain af-
ter the processing of filtering stages described in Sections 4.1,
4.2, and 4.3. In addition, we call the origin event of each process
tree among mutation events, the Infiltrate Event in this paper.
This is because the collection of origin events represent the com-
mand when invading a container. Organizing them in a process
tree makes it easier to determine what happened during one intru-
sion. We show an example of the detection result by the proposed
method as below. In this example, after invading the container
with the bash command, an intruder invoked the communication
with the specific API via a curl command. The bash command
becomes the Infiltrate Event, and the process execution of the
curl command is detected as the Mutation Event of its child. In
this way, we demonstrate that it is possible to analyze the muta-
tion events executed in a container more effectively by organizing
them in a tree format using the parent-child relationship instead
of the system call event.

Fig. 5 Example of mutation events.

Fig. 6 Number of containers in a large-scale cluster over time.

5. Large-scale Cluster Implementation and
Evaluation

5.1 Large-scale Cluster Implementation
5.1.1 Experimental Environment

In this work, we conducted a container integrity monitoring
experiment on a large-scale Kubernetes cluster. Since a huge vol-
ume of system calls are expected to occur in a large-scale cluster,
our implementation needs to consider processing speed and trans-
fer method for data. In this section, we discuss how we implement
our proposed approach in such an environment and discuss the
evaluation.

Our experimental environment includes a large-scale cluster
which is hosted by 160 nodes and 3,800 containers (on average)
running in 138 Namespaces as seen in Fig. 6. This large-scale
cluster serves as a development environment where DevOps cy-
cles take place in an IT organization.

Our approach does not use any prior-knowledge on what kind
of applications are running in the cluster or if there is any changes
in certain currently running applications.
5.1.2 Evaluation Index and Placement

In a large-scale cluster, detecting mutation events by monitor-
ing system calls in all nodes involves handling a huge amount
of system call events. We implemented our proposed method in
this type of large-scale environment. To make sure our proposed
approach does not impact normal operations of the cluster we

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table 5 Scale of the experiment.

Item Number
container (average) 3,800

pod (average) 3,000
node (average) 160

namespace 138
experiment period 11 days

Total monitored system calls 596,025,036

evaluated the impact on clusters with the following indicators.
5.1.3 Processing Delay

As seen in Table 5, in a cluster with 160 number of nodes, sys-
tem calls occur at the rate of 2.3 million events/hour. To process
such huge volume of events, first we consider the placement of
processing pipelines and components. Let us assume t is the time
taken for processing a single event filtering and Tsys is the time
taken for system calls to occur in the entire cluster. To process all
system call events in the cluster, t needs to be less than Tsys.
5.1.4 Distributed Processing

Kubernetes clusters require a connection to the Kubernetes API
server to access the cluster configuration. To determine if system
calls events are generated by the cluster system, our approach
needs to use the command character string defined in the config-
uration information for a Pod. For this, our approach needs to
request Pod information from Kubernetes API server. However,
one API is generally used in the cluster. This API is provided
at a single point even in a large-scale cluster. Therefore, if our
approach makes a request for a huge volume of events, the oper-
ation of the API server will be greatly delayed, and in some cases
it may cause the entire cluster to stop working.

In addition, detected mutation events are eventually stored in
one central server, so the data storage component is also a single
point. If there is too much access to it, data storing would stop.

To avoid such issues, we need to identify the component that
is a single point and measure access to single point component in
the entire cluster.
5.1.5 Data Volume

Due to the large number of system call events, data size is one
of the issues to handle. The raw event output by the system call
monitoring by Falco used in this paper is about 3 KB in size per
event. As stated in Section 5.1.3, 2.3 million events/hour occur in
the 160 node cluster.

Depending on the transfer method, 2,300,000 [/hour] ×
3 [KB] = 144 [GB/day] of traffic will be generated in the worst
case, which may also affect the operation of the entire cluster, as
discussed in the previous section. Therefore, we use the follow-
ing two point evaluation metrics for data transfer.
• The event filtering component is properly configured and can

process data.
• The amount of data transferred to a single point that can af-

fect the entire cluster is low enough
From the above three perspectives, we implemented our pro-

posed approach with the architecture shown in Fig. 7. All event
filtering components are placed in each node, so they can pro-
cess all system call events inside their nodes without access to
the other nodes. After the event filtering steps, the number of
output (a.k.a mutation events) is very small, so it can effectively

Fig. 7 Architecture to implement our proposed approach in the large-scale
cluster.

Fig. 8 Example of processing delay (at 1 node).

avoid the overloads at a single point.

5.2 Experimental Results
5.2.1 Processing Delay

The event filtering component performs the flow of processing
as shown in the pseudo code of Section 4, and each system call
event contains the information necessary for that processing as an
attribute in the following form. In addition, as described in Sec-
tion 5.1.3, access to Kubernetes API occurs only once for a new
pod event. Thus, the processing time order of 1 event is O(1), or
namely a constant time. Since it does not depend on the number
of events, only the time to process single event matters.

Regarding the actual processing speed measured during the ex-
periment, the average system call event generation period was
170 [ms], but our proposed approach can process a single event
within 9 [ms] on average for the filtering step. Most of system
call events are filtered out by our proposing filtering method (see
discussion in Section 5.2.4), so the speed 9 [ms] for filtering is
enough for processing events generated every 170 [ms].
5.2.2 Distributed Processing

First, regarding the requests to Kubernetes API server, very
few requests are made to the K8s API server in the steady state
(as seen in Fig. 9). This is because the request timing of the pod
configuration information is set only when a new pod is detected,
as stated in Section 5.1.4.

Second, concerning the access to data storage, a huge vol-
ume of events are filtered within a single node. Among 2.3 mil-
lion events/hour, there are very few mutation events as shown in
Fig. 10. Output frequency for data storage is also well distributed.

Although it is rare, some mutations events are sent to storage.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 9 Kubernetes API access over time.

Fig. 10 Number of storage access over time.

Fig. 11 Memory consumption for event filtering component over time.

In Section 6, we discuss what those detected mutation events are.
5.2.3 Data Volume

We evaluate data volume from two perspectives: a) amount of
data that corresponds to system calls that occurred per node (host)
b) data transfer rate for a single point.

First, per node, system call events occurred in amounts of 14
thousand [events/hour]. If the processing speed per event slows
down as shown in Section 5.2.1, a large number of events can
occur instantaneously. Therefore, we need to establish a buffer
to handle such cases and need some other constant amount of
memory for filtering itself. During the experiment, the overall
memory size used by the filtering component was 132.7 [MB] at
maximum. This memory consumption is small and will not im-
pact the cluster operation. On the other hand, CPU usage was
around 40 [milli core] on average with 2.0 GHz CPUs, and this
is also small enough to allow other applications on a cluster to
maintain their workload.

Next, regarding data transfer rate for a single point, from a sin-
gle node, we check the transfer volume of mutation event data
as seen in Fig. 12. For all nodes in the cluster, average data
transfer size is 72.8 [KB/hour], which is small if one considers
the data storage component. Even at a highest transfer size of
3.59 [KB/min], one could see that the transfer amount is suffi-

Fig. 12 Size of mutation events sent to storage.

Fig. 13 Result of experiment - effect of event filtering.

ciently small.
5.2.4 Integrity Event Detection and Filtering Results

Figure 13 illustrates the event count and the effect of event fil-
tering observed in this experiment. Even in large-scale cluster,
our approach realized the same event filtering effect as it did with
the test data described in Section 3. Covering the entire cluster,
from 596 million system call events, our approach filtered almost
99.99988% of events that are expected events, and detected 717
mutation events that relate to container integrity.

In terms of data size, raw system call events amount to 1.5 TB,
which were collected over a period of 11 days. However, the de-
tected mutation events data correspond to only 3.4 MB.

Therefore, the proposed method and this implementation are
suitable for long-term integrity monitoring of containers running
a large-scale cluster.

6. Analysis of Detected Infiltrate Events

From 3,800 containers running on 138 Namespaces, only 18
containers on 12 different Namespaces were responsible for all
of 717 infiltrate events. We analyzed the character string and the
execution timing of the commands found in each infiltrate event
occurring in the 18 containers. We found that they were roughly
divided into the following two cases.
• Case A: Almost the same (or completely the same) com-

mands are repeated
• Case B: Commands such as bash and sh are executed inde-

pendently
Here, in Kubernetes, there are two types of commands, kubectl

exec and kubectl cp, that can be performed externally on a run-
ning container. ‘kubectl exec’ executes the specified command in
the container, whereas kubectl cp is a command for copying a file
from the container to the host or from the host to the container.
Based on these results, we categorize infiltrate events into two
types.
• Type A: kubectl exec/cp is repeatedly executed by some

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table 6 Type A: Repeated commands in a container.

Event Time Command
2020-XX-XX 21:00:36 tar cf - [dirctory]/jenkins-XXXXX-202-XXXXX
2020-XX-XX 15:35:13 tar cf - [dirctory]/jenkins-XXXXX-203-XXXXX
2020-XX-XX 21:02:02 tar cf - [dirctory]/jenkins-XXXXX-204-XXXXX
2020-XX-XX 18:46:46 tar cf - [dirctory]/jenkins-XXXXX-205-XXXXX

Table 7 Type B: Specific command execution with shell.

Event Time Command
2020-XX-XX 19:18:35 bash
2020-XX-XX 19:18:44 ls
2020-XX-XX 19:18:48 ls -l
2020-XX-XX 19:20:21 cat [filename].sh
2020-XX-XX 19:21:03 vim [filename].sh

script etc.
• Type B: user executes kubectl exec/cp for some purpose.
Among the 18 containers in which infiltrate events occurred, 6

containers fall into type A, the rest fall into type B.
Since type A refers to repeated events, we could consider them

to be allowlisted. However, the commands were executed on
the container from outside the system unlike the commands de-
fined in the application configuration information such as live-
nessProbe.

In addition, it is likely that the cluster administrator might not
be aware what command is being executed. Considering that it
may be an attack that executes a large number of same com-
mands so even if the command is repeatedly executed, it is not
defined in the configuration information of the running container.
Therefore, this type of event is the primary target of our proposed
approach for integrity monitoring.

An example of type A (repeated events) is shown in Table 6.
One can see that a part of the command character string is a se-
rial number, and similar commands are repeatedly executed. An
infiltrate event with command “tar cf -” is a typical pattern of
“kubectl cp”, so this can be considered as a repetition of kubectl
cp. Further, the string ‘jenkins’ appears as part of the command.
We could infer that the events in this example were caused by
Jenkins which is a tool that monitors and manages applications in
the Kubernetes cluster.

Mutation events that are type B are distinctly different from the
expected events. This type of event is the primary target of our
proposed approach.

Table 7 shows an example of an event occurred due to a set of
bash commands executed on a container by a user. User entered
a container via kubectl exec and executed ls, cat, etc., and opened
a script file with vim command. It is obvious that the user tried to
change configuration of this container.

In this case, a user might view and edit a script file. Since we
performed this experiment in a development cluster for business
purposes, the example event above is thought to be caused by a
developer and the malignancy is low. However, on a production
cluster for services, if a malicious person infiltrates a container
and accesses an important file (for example, the private key file
of the Kubernetes cluster placed in the container), our approach
could detect such actions as mutation events. This type of muta-
tion event is the primary target for integrity monitoring and need
to be detected.

Furthermore, we conducted an interview with a cluster ad-
ministrator of the cluster. The administrator commented that
the jenkins is actually used for this cluster, so detected infiltrate
events with jenkins commands would be the actual external op-
eration to containers, and the rest of the detected events indicate
unknown intrusions to container. This is a clear evidence of the
capability of the proposed approach.

7. Related Work

Prior work on monitoring system changes were primarily based
on rule-based approaches [11], [15], [26]. System experts de-
signed a list of targets (files and processes) and a set of rules for
change identification. Then rule-based approaches monitored the
existence of target files and their properties such as size of files,
last modification time, and hash value of files etc. For instance,
Refs. [5], [12], [22] used the files’ last modification data and time
and hard value to determine a file change event. The approaches
in OSSEC [15] and Tripwire [12] detected the change events by
a) storing the hash value, latest update date and time, and permis-
sion information of the monitored file and b) checking periodi-
cally whether there is a difference. Rule-based approaches have
several drawbacks: a) maintaining rules for monitoring system
changes is labor and resource intensive, b) good understanding
of systems is required for experts, c) rules are hard to reuse in
heterogeneous environment like cloud [25].

As an alternative, Refs. [13], [17], [19] proposed approaches
based on monitoring system call events at operating system (OS)
level. Jin et al. [11] proposed a similar approach that detects file
change events using system calls in virtual environments (VMs).
Here, the approach obtained the information about which user
changed the file and when from the system calls.

Reference [1] proposed an approach that uses time and space
efficient point-in-time copy and performs file system integrity
checks to detect intrusions in storage systems.

For monitoring process executions events, there are methods
that periodically acquire a list of processes and system calls.
Since there existed a predefined list of processes to monitor, these
methods were less resource sensitive than the approaches de-
scribed in Refs. [7], [16].

Reference [3] proposed a “discovery by example” approach
that autonomously searched and identified system changes in
cloud. This approach automatically learned characteristic fea-
tures of system changes without requiring any rule definitions or
expert knowledge of underlying systems. This approach treated
each system event independently and captured the changes as-
sociated to it. However, system changes may be represented
by multiple system events in a cloud environment. Therefore,
Ref. [25] introduced a practical system change discovery frame-
work to capture system states on-demand, detect multiple system
changes between them and form relationships among events.

There existed a wide range of commercial products. For in-
stance, Solarwinds’s Security Event Manager [23], Qualys’s File
Integrity Monitoring [21], Trustwave’s Endpoint Protection [24],
OSSEC [15] and Tripwire [12] for file integrity monitoring in
cloud environment. We refer readers to Ref. [20] for detail com-
parison of currently available tools for file integrity monitoring

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

and their underlying approaches.
Compared to rule based approaches, “discovery by example”,

and on-demand approaches, our methodology applies a filtering
approach to distill system call events associated to the expected
behavior of containerized applications, thereby detecting muta-
tion events that are anomalies.

8. Conclusion

In this work, we proposed a novel mechanism filter out de-
fault behavioral events in containers and detect mutations events
that are anomalous. For this, based on our empirical studies on a
small scale cluster, we built an approach for automatically gener-
ating allowlists that could efficiently filter out container expected
events. In a large-scale cluster, we then demonstrated our pro-
posed approach could not only process a huge volume of system
calls from containers but also efficiently distill expected events to
detect mutation events. From our investigations and the exper-
imental results, on the large-scale cluster, we conclude that our
approach could detect mutation events due to that fact it could
process huge volume of system calls that occur at 144 [GB/day]
efficiently from 160 nodes in real time and distill expected events
in containers. In addition, we verified that our proposed approach
could filter container execution (expected) events and efficiently
detect mutation events with less impact on the cluster’s opera-
tions from processing speed, distribution and data size perspec-
tives. The empirical studies conducted in a large-scale cluster
demonstrated the importance role of filtering the expected events
in container integrity monitoring. This type of filtering approach
is indispensable for container integrity monitoring, especially for
a large-scale Kubernetes cluster.

References

[1] Banikazemi, M., Poff, D. and Abali, B.: Storage-based file system in-
tegrity checker, Proc. 2005 ACM Workshop on Storage Security and
Survivability, StorageSS ’05, pp.57–63, Association for Computing
Machinery (2005).

[2] Borello, G.: System and application monitoring and troubleshooting
with sysdig, USENIX Association (2015).

[3] Chen, H., Duri, S.S., Bala, V., Bila, N.T., Isci, C. and Coskun, A.K.:
Detecting and identifying system changes in the cloud via discovery
by example, 2014 IEEE International Conference on Big Data (Big
Data), pp.90–99 (2014).

[4] PCI Security Standards Council, LLC: PCI DSS quick reference guide
(2016).

[5] Ding, B., He, Y., Zhou, Q., Wu, Y. and Wu, J.: hGuard: A framework
to measure hypervisor critical files, 2013 IEEE 7th International Con-
ference on Software Security and Reliability Companion, pp.176–181
(2013).

[6] Dubois-Ferriere, H.: Introducing falco: Open source, behavioral secu-
rity from sysdig (2016).

[7] Gupta, S., Sardana, A. and Kumar, P.: A light weight centralized file
monitoring approach for securing files in cloud environment, 2012 In-
ternational Conference for Internet Technology and Secured Transac-
tions, pp.382–387 (2012).

[8] Kitahara, H., Gajananan, K. and Watanabe, Y.: Highly-scalable con-
tainer integrity monitoring for large-scale Kubernetes cluster, 2020
IEEE International Conference on Big Data (Big Data 2020) (2020).

[9] Redhat Inc.: What is container orchestration? (2020).
[10] Redhat Inc.: What’s a linux container? (2020).
[11] Jin, H., Xiang, G., Zou, D., Zhao, F., Li, M. and Yu, C.: A guest-

transparent file integrity monitoring method in virtualization environ-
ment, Computers & Mathematics with Applications, Vol.60, No.2,
pp.256–266 (2010).

[12] Kim, G.H. and Spafford, E.H.: The design and implementation of trip-
wire: A file system integrity checker, Proc. 2nd ACM Conference on
Computer and Communications Security, CCS ’94, pp.18–29, Associ-

ation for Computing Machinery (1994).
[13] Ko, R.K.L., Jagadpramana, P. and Lee, B.S.: Flogger: A file-centric

logger for monitoring file access and transfers within cloud comput-
ing environments, 2011 IEEE 10th International Conference on Trust,
Security and Privacy in Computing and Communications, pp.765–771
(2011).

[14] Kubernetes: Kubernetes documentation (2020).
[15] Lazarevic, A., Kumar, V. and Srivastava, J.: Intrusion Detection: A

Survey, pp.19–78, Springer US, Boston, MA (2005).
[16] Maddox, I.: Kubernetes simple file integrity monitoring (fim) con-

tainer (2019).
[17] Quynh, N.A. and Takefuji, Y.: A real-time integrity monitor for xen

virtual machine, International conference on Networking and Services
(ICNS ’06), p.90 (2006).

[18] NIST: Fisma implementation project (2014).
[19] Patil, S., Kashyap, A., Sivathanu, G. and Zadok, E.: FS: An in-

kernel integrity checker and intrusion detection file system, Proc. 18th
USENIX Conference on System Administration, LISA ’04, pp.67–78,
USENIX Association (2004).

[20] Peddoju, S.K., Upadhyay, H. and Lagos, L.: File integrity monitoring
tools: Issues, challenges, and solutions, Concurrency and Computa-
tion: Practice and Experience, Vol.32, No.22, e5825 (2020).

[21] Qualys: File integrity monitoring (2020).
[22] Shi, B., Li, B., Cui, L. and Ouyang, L.: Vanguard: A cache-level sen-

sitive file integrity monitoring system in virtual machine environment,
IEEE Access, Vol.6, pp.38567–38577 (2018).

[23] Solarwinds: Security event manager (2020).
[24] Trustwave: Trustwave endpoint protection (2020).
[25] Turk, A., Chen, H., Byrne, A., Knollmeyer, J., Duri, S.S., Isci, C. and

Coskun, A.K.: Deltasherlock: Identifying changes in the cloud, 2016
IEEE International Conference on Big Data (Big Data), pp.763–772
(2016).

[26] Zlatkovski, D., Mileva, A., Bogatinova, K. and Ampov, I.: A new
real-time file integrity monitoring system for windows-based envi-
ronments, Proc. ICT Innovations 2018, ISSN 1857-7288, pp.243–258
(2018).

Hirokuni Kitahara was born in 1992.
He received his M.E. degree from Waseda
University in 2018. He joined the In-
formation Processing Society of Japan in
2019. He is currently a research scientist
at IBM Research - Tokyo. His research
interest is cloud security technology.

Kugamoorthy Gajananan was born in
1981. He acquired his Ph.D. in Informat-
ics at the National Institute of Informatics,
also affiliated to the Graduate University
for Advanced Studies. He has been work-
ing a research at IBM Research - Tokyo
since 2014. His current research interests
include security, compliance, and cloud.

Yuji Watanabe was born in 1973. He
received Ph.D. in the Department of En-
gineering, University of Tokyo in 2001.
He joined IBM Research in 2001. His re-
search interests include security, compli-
ance, and cloud platforms.

c© 2021 Information Processing Society of Japan

