ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.62
  3. No.9

Real-time Container Integrity Monitoring for Large-Scale Kubernetes Cluster

https://ipsj.ixsq.nii.ac.jp/records/212851
https://ipsj.ixsq.nii.ac.jp/records/212851
af913088-7d49-4e74-9ba1-f628e4a50eb1
名前 / ファイル ライセンス アクション
IPSJ-JNL6209002.pdf IPSJ-JNL6209002.pdf (2.5 MB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2021-09-15
タイトル
タイトル Real-time Container Integrity Monitoring for Large-Scale Kubernetes Cluster
タイトル
言語 en
タイトル Real-time Container Integrity Monitoring for Large-Scale Kubernetes Cluster
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:Society 5.0を実現するコンピュータセキュリティ技術] container integrity, Kubernetes, allowlist
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
IBM Research - Tokyo
著者所属
IBM Research - Tokyo
著者所属
IBM Research - Tokyo
著者所属(英)
en
IBM Research - Tokyo
著者所属(英)
en
IBM Research - Tokyo
著者所属(英)
en
IBM Research - Tokyo
著者名 Hirokuni, Kitahara

× Hirokuni, Kitahara

Hirokuni, Kitahara

Search repository
Kugamoorthy, Gajananan

× Kugamoorthy, Gajananan

Kugamoorthy, Gajananan

Search repository
Yuji, Watanabe

× Yuji, Watanabe

Yuji, Watanabe

Search repository
著者名(英) Hirokuni, Kitahara

× Hirokuni, Kitahara

en Hirokuni, Kitahara

Search repository
Kugamoorthy, Gajananan

× Kugamoorthy, Gajananan

en Kugamoorthy, Gajananan

Search repository
Yuji, Watanabe

× Yuji, Watanabe

en Yuji, Watanabe

Search repository
論文抄録
内容記述タイプ Other
内容記述 Container integrity monitoring is defined as a key requirement for regulatory compliance such as PCI-DSS, in which any unexpected changes such as file updates or program runs must be logged for later audit. System call monitoring provides comprehensive monitoring of such change events on container since it may suffer from large amount of false alarms unless well-defined allowlist rules are coordinated before deploying a container. Defining such a comprehensive allowlist is not feasible especially when managing various kinds of application workloads in large-scale enterprise cluster. We propose a new approach for identifying real anomalies in system call events effectively without relying on any predefined allowlist configuration in this paper. Our novel filtering algorithm based on the knowledge acquired autonomously from Kubernetes cluster control plane reduces 99.999% of noise effectively and distills only abnormal events in real time. Furthermore, we define concrete criteria for highly-scalable container integrity monitoring and verify the implementation of proposing filtering method that has actual high scalability while maintaining its detection capability. Our experiment with real applications on around 3,800 containers demonstrates its effectiveness even on large-scale clusters, and we clarified how detected events are triggered by user operation.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.29.505
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Container integrity monitoring is defined as a key requirement for regulatory compliance such as PCI-DSS, in which any unexpected changes such as file updates or program runs must be logged for later audit. System call monitoring provides comprehensive monitoring of such change events on container since it may suffer from large amount of false alarms unless well-defined allowlist rules are coordinated before deploying a container. Defining such a comprehensive allowlist is not feasible especially when managing various kinds of application workloads in large-scale enterprise cluster. We propose a new approach for identifying real anomalies in system call events effectively without relying on any predefined allowlist configuration in this paper. Our novel filtering algorithm based on the knowledge acquired autonomously from Kubernetes cluster control plane reduces 99.999% of noise effectively and distills only abnormal events in real time. Furthermore, we define concrete criteria for highly-scalable container integrity monitoring and verify the implementation of proposing filtering method that has actual high scalability while maintaining its detection capability. Our experiment with real applications on around 3,800 containers demonstrates its effectiveness even on large-scale clusters, and we clarified how detected events are triggered by user operation.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.29.505
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 62, 号 9, 発行日 2021-09-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:21:05.270677
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3