Item type |
SIG Technical Reports(1) |
公開日 |
2020-11-18 |
タイトル |
|
|
タイトル |
On the Three-Directional Ray Cacti |
タイトル |
|
|
言語 |
en |
|
タイトル |
On the Three-Directional Ray Cacti |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
Tokyo Institute of Technology |
著者所属 |
|
|
|
Tokyo Institute of Technology |
著者所属(英) |
|
|
|
en |
|
|
Tokyo Institute of Technology |
著者所属(英) |
|
|
|
en |
|
|
Tokyo Institute of Technology |
著者名 |
Hiroki, Katsumata
Satoshi, Tayu
|
著者名(英) |
Hiroki, Katsumata
Satoshi, Tayu
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
A connected graph is called a cactus if any two cycles have at most one vertex in common. A cactus is called a pseudotree if it contains at most one cycle. In this paper, We show that the characterization of 3-directional orthogonal ray cacti and 3-directional orthogonal ray pseudotrees. We also show that the recognition of 3-directional orthogonal ray cacti can be solved in polynomial time. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
A connected graph is called a cactus if any two cycles have at most one vertex in common. A cactus is called a pseudotree if it contains at most one cycle. In this paper, We show that the characterization of 3-directional orthogonal ray cacti and 3-directional orthogonal ray pseudotrees. We also show that the recognition of 3-directional orthogonal ray cacti can be solved in polynomial time. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN1009593X |
書誌情報 |
研究報告アルゴリズム(AL)
巻 2020-AL-180,
号 6,
p. 1-8,
発行日 2020-11-18
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8566 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |