On the Three-Directional Ray Cacti

Hiroki Katsumata¹ Satoshi Tayu¹

Abstract: A connected graph is called a *cactus* if any two cycles have at most one vertex in common. A cactus is called a *pseudotree* if it contains at most one cycle. In this paper, We show that the characterization of 3-directional orthogonal ray cacti and 3-directional orthogonal ray pseudotrees. We also show that the recognition of 3-directional orthogonal ray cacti can be solved in polynomial time.

1. Introduction

A bipartite graph *G* with a bipartition (X, Y) is called an *ORG* (*orthogonal ray graph*) if there exist a family of non-intersecting rays (half-lines) R_u ($u \in X$), parallel to the *x*-axis in the *xy*-plane, and a family of non-intersecting rays R_v ($v \in Y$), parallel to the *y*-axis such that for any $u \in X$ and $v \in Y$, (u, v) $\in E(G)$ if and only if R_u and R_v intersect. An ORG is called a *3DORG* (*3-directional orhtogonal ray graph*) if every vertical ray has the same direction, or every holizontal ray has the same direction. An ORG is called a *2DORG* (*2-directional orhtogonal ray graph*) if every vertical ray has the same direction. By definition, any 2DORG is a 3DORG, and any 3DORG is an ORG.

A mapping of a sum-of-product onto nano-programable logic array (nano-PLA) is inivestigated in the literature [1], [4], [8]. Since a nano-PLA can be represented by ORG and/or 3DORG [5], finding characterizations of such graphs is very important, and some problems are investigated for these graphs [3], [5], [7], [9].

A *cactus* is a connected graph in which any two cycles have at most one vertex in common. A *pseudotree* is a connected graph containing at most one cycle. A tree is a pseudotree, and pseudotree is a cactus by definition.

An *edge-asteroid* is a sequence of edges $(e_0, e_1, \ldots, e_{2k})$ such that for each $0 \le i \le 2k$, there exists a path containing e_i and $e_{i+1 \pmod{2k+1}}$ that avoids the neighbors of the end-vertex of $e_{k+i+1 \pmod{2k+1}}$. An *A5E* (asteroid quintuple of edges) is a sequence of five edges $(e_0, e_1, e_2, e_3, e_4)$ such that for any $0 \le i \le 4$, there exists a path from e_i to $e_{i+1 \pmod{5}}$ that avoids the neighbors of the end-vertices of $e_{i-1 \pmod{5}}$ and $e_{i+2 \pmod{5}}$.

Let $\mathcal{F}_1 = \{T_0, T_1, T_2, T_3\}$ be the set of four trees shown in Fig.1. The following characterizations can be found in the literature [2], [6].

Theorem I A bipartite graph G is a 2DORG if and only if it contains no edge-asteroid and no induced cycle of length at least

6.

Theorem II The following statements are equivalent for a tree T;

- (1) T is a 2DORG;
- (2) T is a 3DORG;
- (3) T contains no edge-asteroid;
- (4) T contains no 3-claw shown in Fig.2(a) as a subtree.

Theorem III The following statementes are equivarent for a tree *T*:

- *T* is an ORG;
- *T* contains no A5E;
- *T* contains no tree in \mathcal{F}_1 as a minor.

Let \mathcal{F}_2 be the set of graphs shown in Fig.2. For any integer

Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro, Tokyo 152– 8550, Japan

Fig. 3 Cycles in C_{2x4} .

 $n \ge 2$, let C_{2n} be the cycle of length 2n, and $C_{2\times n} = \{C_{2i} \mid i \ge n\}$. $C_{2\times 4}$ is the set of cycles shown in Fig. 9 for $i \ge 4$. Let $C_6 \cdot C_6$, $C_6 \cdot C_6$, and $2 \times C_6$ be the graphs shown in Fig.4(a), (b), and (c), respectively. The characterization of ORG and 3DORG has been open.

We show in this paper the following, where Theorem 1 is obtained as a corollary of Theorem 2.

Theorem 1 The following statements are equivalent for a bipartite pseudotree *G*:

- (1) G is a 3DORG;
- (2) G contains no edge-asteroid;
- (3) G contains no graph in $C_{2\times 4} \cup \mathcal{F}_2$ as an induced subgraph.

Theorem 2 The following statements are equivalent for a bipartite cacti *G*:

- (1) G is a 3DORG;
- (2) *G* contains no edge-asteroid and no pair of cycles of length 6;
- (3) G contains no graph in $C_{2\times 4} \cup \mathcal{F}_2 \cup \mathcal{F}_3$ as an induced subgraph.

Theorem 3 The recognition of 3-directional orthogonal ray cacti is solved in polynomial time.

2. Preliminaries

2.1 Ray Representation of Graphs

In this section, we assume that G is a connected 3-directional orthogonal ray graph, with diameter at least 5. We assume without loss of generality that rays of a 3DORG G parallel to y-axis

Fig. 5 Example of a Ray Representation.

are downward direction. For a vertex v of G, we denote by (x(v), y(v)) the coordinate of the end point of R_v . For an edge e = (u, v) of G, let R_u and R_v be the rays corresponding to u and v, respectively, and $\rho(e) = (x(e), y(e))$ be the cross point of R_u and R_v . We denote by the sequence $\langle w_1, w_2, \ldots, w_p \rangle$ of the vertices the path with the vertex set $\{w_1, w_2, \ldots, w_p\}$ and edge set $\{(w_i, w_{i+1}) \mid 1 \le i \le p-1\}$. Let $V_D(G)$ be the set of vertices corresponding to downward rays, and $V_H(G) = V(G) - V_D(G)$. Define that

$$x_{\min} = \min\{x(v) \mid v \in V_D(G)\},$$

$$x_{\max} = \max\{x(v) \mid v \in V_D(G)\},$$

$$y_{\min} = \min\{y(v) \mid u \in V_H(G)\}, \text{ and }$$

$$y_{\max} = \max\{u(v) \mid u \in V_H(G)\}.$$

For $(w, w') \in E(G)$, let $R_w[w']$ be a partial ray of R_w whose end point is just the cross point of R_w and $R_{w'}$. Since R_w and $R_{w'}$ intersect, R_w and $R_{w'}$ divide the plane into two areas say $A^D(w, w')$ and $A^U(w, w')$, where $A^U(w, w')$ is the area containing $\{(x, y) | y \ge y_{max}\}$.

For any vertex $w \in V(G)$ and its adjacent vertices w', w'' in G, let $R_w[w', w'']$ be a line segment with endpoints $\rho((w, w'))$ and $\rho((w, w''))$. For an induced path $P = \langle w_0, w_1, \dots, w_p \rangle$ of G, let

$$B[P] = R_{w_0}[w_1] \cup R_{w_p}[w_{p-1}] \cup \bigcup_{i=2}^{p-1} R_{w_i}[w_{i-1}, w_{i+1}].$$

The upper and lower sides of B[P] are denoted by $A^U[P]$ and $A^D[P]$, respectively.

As an example, we show in Figure 5 a ray representation of a

path $P = \langle u_1, v_0, u_0, v_1, u_2 \rangle$, such that R_{u_0} and R_{u_1} are leftward rays with $x_{u_0} < x_{u_1}$, R_{v_0} and R_{v_1} are downward rays with $x_{v_0} < x_{v_1}$, and R_{u_2} is a rightward ray, where (x_v, y_v) is the endpoint of the ray R_v corresponding to v. Green rays are $R_{v_0}[u_1]$ and $R_{u_1}[v_0]$ dividing the plane into two areas $A^D(u_1, v_0)$ and $A^U(u_1, v_0)$, and red rays are $R_{v_1}[u_2]$ and $R_{u_2}[v_1]$ dividing into $A^D(u_2, v_1)$ and $A^U(u_2, v_1)$. A blue line segment shows $R_{u_0}[v_0, v_1]$. $A^D[\langle u_1, v_0, u_1, v_1, u_2 \rangle]$ is the area shown by diagonal lines.

By definition, we have the following.

Lemma 1 Let $P = \langle w_0, w_1, \dots, w_p \rangle$ be an induced subpath of a 3DORG. Then, *xy*-plane is separated by B[P] into two regions

For an edge (u, v) of a 3DORG G with $u \in X$, Let

$$\begin{split} A^{LD}(u,v) \ &= \ \{(x,y) \mid x < x(v), y < y(u)\}, \text{ and} \\ A^{RD}(u,v) \ &= \ \{(x,y) \mid x > x(v)\} \cup \{(x,y) \mid y > y(u)\}. \end{split}$$

It should be noted that $B[\langle u, v \rangle]$ separates the *xy*-plane.

For a graph *G* and vertices $u, v \in V(G)$, let dist_{*G*}(u, v) be the distance between *u* and *v* in *G*. For a subgraph *S* of *G* and $w \in V(G)$, let dist_{*G*} $(S, w) = \min_{u \in V(S)} \text{dist}_{G}(u, w)$. An induced subpath of *G* is called an *edge-spine* of *G* if at least one endvertex of any edge of *G* is within distance one from at least one vertex of the path.

Lemma 2 Let $\mathcal{R}(G)$ be a 3-directional orthogonal ray representation of G, and let u_L and u_R be the vertices corresponding the leftward and rightward rays of minimum *y*-coordinates, respectively. Then, an induced u_L - u_R path P of G is an edge-spine.

Proof. We assume without loss of generality that $\mathcal{R}(G)$ is not a 2-directional orthogonal ray representation.

Let $v_L [v_R]$ be the adjacent vertex of $u_L [u_R]$, in *P*. It suffices to show that for any edge (u, v),

 $\operatorname{dist}_G(P, u) \le 1 \text{ or}$ (1)

$$\operatorname{dist}_G(P, v) \le 1. \tag{2}$$

Case 1: *u* is a leftward ray.

If *u* or *v* is in *P*, (1) or (2) holds. So, we assume that that *u* and *v* are outside *P*. If a vertex $w \in V(P)$ has a downward ray R_w with $x(w) < x(v_L)$, R_w and R_{u_L} intersect, and this contradicts to *P* to be an induced path. Therefore,

$$\{(x, y) \mid x < x(v_L), y > y(u_L)\} \cap B[P] = \emptyset, \text{ i.e.,} \\ \{(x, y) \mid x < x(v_L), y > y(u_L)\} \subset A^U[P].$$

Since *u* is leftward and $y(u) > y(u_L)$, a partial ray $\{(x, y(u)) | x < x(v_L)\}$ of R_u is contained in $A^U[P]$. Therefore, we have

$$A^{U}[P] \cap R_{u} \neq \emptyset. \tag{3}$$

Since R_v is downward,

$$\{(x(v), y) \mid y < y_{\min}\} \subset R_v$$

and we have

 $A^{D}[P] \cap R_{v} \neq \emptyset. \tag{4}$

From Lemma 1, (3), and (4), we have that $R_u \cup R_v$ intersect B[P], i.e., R_u or R_v intersects B[P].

Thus, we have (1) or (2).

Case 2: *u* is a righttward ray.

By the similar arguments to the proof of Case 1, we have the lemma.

As a corollary of Lemma 2, we have the following.

Corollary 1 A connected 3DORG has an edge-spine as an induced subgraph.

It should be noted that there is connected bipartite graph containing an edge-spine as an induced subgraph, but not a 3DORG.

2.2 3-Directional Orthogonal Ray Graph with an Induced Subcycle of Length 6

In this subsection, we consister a ray representation of a 3DORG *G* containing C_6 as an induced subgraph. For a positive integer *i*, we denote that $[i] = \{0, 1, ..., i\}$. Define that

$$V(C_6) = \{w_i \mid i \in [5]\}, \text{ and}$$

$$E(C_6) = \{(w_i, w_{i+1(\text{mod } 6)}) \mid i \in [5]\}.$$

Consider any ray representation $\mathcal{R}(G)$ of G. For any $i \in [5]$, let R_i be the ray of $\mathcal{R}(G)$ corresponding to w_i , and (x_i, y_i) be the *xy*-coordinate of the end point of R_i . We assume without loss of generality that R_0, R_2, R_4 are vertical, and R_2 and R_4 are the left and right most vertical rays, respectively, i.e., $x_2 < x_0 < x_4$.

We now see that

 $y_1, y_5 \le y_0 < y_3 \le y_2, y_4 \tag{5}$

Since R_3 intersects both R_2 and R_4 , we have $y_2, y_4 \ge y_3$,

$$\{(x, y_3) \mid x_2 \le x_4\} \subset R_3 \text{ and}$$
 (6)

$$(x_0, y_3) \in R_3. \tag{7}$$

Since R_0 and R_3 does not intersect,

$$(x_0, y_3) \notin R_0 = \{(x_0, y) \mid y \le y_0\}$$

by (7). Therefore, we have $y_3 > y_0$. Since R_1 and R_5 intersect R_0 , $y_1, y_5 < y_0$. Thus, we have (5).

We next see that

 $x_2 < x_5 \le x_0 \le x_1 < x_4,\tag{8}$

and that R_1 and R_5 are leftward and rightward rays, respectively. Since R_1 intersects both R_0 and R_2 ,

$$\{(x, y_1) \mid x_2 \le x \le x_0\} \subset R_1.$$
(9)

From $x_0 < x_4$ and $y_1 < y_4$, R_1 is leftward and $x_1 < x_4$, since R_1 does not intersect R_4 . Thus from (9), $x_0 \le x_1$. Similarly, we also have $x_2 < x_5 \le x_0$ and R_5 to be rightward.

Let $Y_{\min}^{L}(C_6)$ and $Y_{\min}^{R}(C_6)$ be the minimum *y*-coordinates of leftward and rightward rays corresponding to a vertex of C_6 , respectively. Similarly, let $X_{\min}(C_6)$ and $X_{\max}(C_6)$ be the minimum and maximum *x*-coordinates of downward rays corresponding to a vertex of C_6 , respectively. Let

$$A^{LD}(C_6) = \{(x, y) \mid x < X_{\min}, y < Y^L_{\min}(C_6)\} \text{ and } A^{RD}(C_6) = \{(x, y) \mid x > X_{\max}, y < Y^R_{\min}(C_6)\}.$$

Figure 6 shows an example of a ray representation of C_6 in case that R_3 is leftward, and $y_1 < y_5$. Since R_3 intersects both R_2 and R_4 , if R_3 is leftward, then $x_3 \ge x_4$ and otherwise, $x_3 \le x_2$. $A^{LD}(C_6)$ and $A^{RD}(C_6)$ are shown by yellow and cyan areas, respectively.

A connected graph *H* with a subgraph *S* is said to be *edge-separable* by *S* if all vertices in V(S) belong to different connected components in H - E(S). For any $v \in V(S)$ and the connected component *C* of H - E(S) containing *v*, we denote by

$$\operatorname{depth}_{S}^{H}(v) = \max_{w \in V(C)} \operatorname{dist}_{C}(v, c).$$

By definition, we have the following.

Lemma 3 A connected graph H is a cactus if and only if it is edge-separable by any induced subcycle.

Lemma 4 If G is edge-separable by C_6 then depth^G_{C_6} $(v_0) = depth^G_{C_6}(v_3) = 0.$

Proof. If v_0 is adjacent with a vertex u outside C_6 , then R_u is holizontal. Let P be the path induced by $\{v_2, v_3, v_4\}$. It should be noted that the cross point (x_0, y_u) of R_0 and R_u is inside $A^D[P]$. If R_u is rightward ray, $\{(x, y_u) | x > x_0\} \subset R_u$. Therefore, R_u intersects R_4 , since $x_0 < x_4$ and $y_u < y_4$. This implies that u is also adjacent with v_4 . Thus, G is not edge-separable by C_6 . Similarly, if R_u is leftward ray, G is not edge-separable.

Therefore, v_0 is not adjacent with any vertex outside C_6 , and depth^G_{C6} $(v_0) = 0$.

If v_3 is adjacent with a vertex u outside C_6 , then R_u is a downward ray containing (x_u, y_3) , the cross point of R_u and R_3 . Let $P = \langle v_1, v_0, v_5 \rangle$. Since $(x_u, y_3) \in A^U[P]$ and R_u is a downward ray, R_u intersects B[P]. Therefore, G is not edge-separable.

Therefore, v_3 is not adjacent with any vertex outside C_6 , and depth^G_C(v_0) = 0.

Thus, we have the lemma.

For $i \in [5]$, let Γ_i be the connected component of $G - E(C_6)$ containing v_i .

Lemma 5 If *G* is edge-separable by C_6 , and Γ_i contains a vertex *w* independent from C_6 with $\operatorname{dist}_G(w, v_i) = 2$ for some $i \in \{1, 2\}$, then there exists a vertex $z \in V(\Gamma_i)$ adjacent with both v_i and *w* in Γ_i such that $R_z \cap A^{LD}(C_6) \neq \emptyset$.

Proof. Consider in case of i = 1. The lemma can be proved similarly when i = 2.

Let z be a vertex adjacent with both w and v_1 , and we show the

$$R_z \cap A^{LD}(C_6) = \emptyset. \tag{10}$$

From $(z, v_1) \in E(C_6)$ and (10), $x_2 < x(z) \le x_1$, since R_z is vertical. Thus from (6) and (10), $y(z) < y_3 \le y_2$. Therefore, R_z intersects R_2 , and we have contradiction. Thus, $R_z \cap A^{LD}(C_6) = \emptyset$, and we have the lemma.

Lemma 6 If *G* is edge-separable by C_6 , then depth^{*G*}_{$C_6}(v_1) \le 1$ or depth^{*G*}_{$C_6}(v_2) \le 1$.</sub></sub>

Proof. Assume contrary that depth^G_{C6} $(v_1) \ge 2$ and depth^G_{C6} $(v_2) \ge 2$. From Lemma 5, Γ_1 and Γ_2 contain vertices z_1 and z_2 such that

$$R_{z_1} \cap A^{LD}(C_6) \neq \emptyset \text{ and}$$
$$R_{z_2} \cap A^{LD}(C_6) \neq \emptyset,$$

respectively. Since R_{z_1} is vertical and $(z_1, v_1) \in E(\Gamma_1)$, we have

$$\{(x(z_1), y) \mid y \le y_1\} \subseteq R_{z_1}.$$

Similarly, we also have

$$\{(x, y(z_2)) \mid x \le x_2\} \subseteq R_{z_2}.$$

Therefore, R_{z_1} and R_{z_2} intersect, and we have contradiction. Thus, depth^G_{C6} $(v_1) \le 1$ or depth^G_{C6} $(v_2) \le 1$, and we have the lemma. By similar arguments to the proof of Lemma 6, we also have the following.

Lemma 7 If *G* is edge-separable by C_6 , then depth^{*G*}_{$C_6}(v_4) \le 1$ or depth^{*G*}_{$C_6}(v_5) \le 1$.</sub></sub>

Lemmas 4, 6, and 7, we have the following.

Corollary 2 If *G* is edge-separable by C_6 , depth $_{C_6}^G(v_0) = depth_{C_6}^G(v_3) = 0$, min(depth $_{C_6}^G(v_1)$, depth $_{C_6}^G(v_2)$) ≤ 1 , and min(depth $_{C_6}^G(v_4)$, depth $_{C_6}^G(v_5)$) ≤ 1 .

A sequence of such depths of a subcycle *C* is called a *depth-sequence* of *C*. It should be noted that the following depth-sequences are equivalent; (1, 2, 3, 4, 5, 6), (6, 1, 2, 3, 4, 5), (6, 5, 4, 3, 2, 1), and so on. We use $depth_C^G(v) = 2^+$ instead of $depth_C^G(v) = l$ for any integer $l \ge 2$, and $depth_C^G(v) = 1^-$ instead of $depth_C^G(v) = 0$ or 1. We also use * as a wild card in the depth sequence. Corollary2, we have the following.

Lemma 8 If a 3DORG has an induced cycle C_6 of length 6 then the depth sequeen of C_6 is $(0, 1^-, *, 0, 1^-, *)$ or $(0, 1^-, *, 0, *, 1^-)$.

In particular, if C_6 has two vertex with depth at least 2, then the depth sequen of C_6 is $(0, 1^-, 2^+, 0, 1^-, 2^+)$ or $(0, 1^-, 2^+, 0, 2^+, 1^-)$.

2.3 Edge-Spine and Edge-Asteroid

An induced cycle of length 6 is said to be *feasible* if its depth sequence forms (0, *, *, 0, *, *).

Lemma 9 If a bipartite cactus G has an edge-spine P and any induced cycle of length 6 is feasible, then G has no edge-asteroid.

Proof. We show the lemma by contradiction.

Suppose that *G* has a lngest edge-spine $P = \langle v_0, v_1, \dots, v_p \rangle$ and an edge-asteroid $(e_0, e_1, \dots, e_{2k})$.

For $i \in [2k]$, we define $J(e_i)$ is the minimum integer j such that v_j adjacent with one endvertex of e_i .

Without loss of generality that $J(e_0) \le J(e_i)$ for any $i \in [2k]$. We denote by $e_k \prec e_l$ if one of the following holds

- $J(e_k) < J(e_l)$, or
- $J(e_k) = J(e_l) = j$ and there exist a path connecting e_k and v_{j-1} avoinding v_j .

Since *G* is a bipartite cactus, $e_k \neq e_l$ if $e_k \prec e_l$.

Then, we can prove the following two propositions.

Proposition 1 If $e_i < e_{i+k+1 \pmod{2k+1}}$, then $e_{i+1 \pmod{2k+1}} < e_{i+k+1 \pmod{2k+1}}$.

Proposition 2 If $e_i < e_{i+k \pmod{2k+1}}$, then $e_i < e_{i+k+1 \pmod{2k+1}}$.

From these proposition, we have $e_i < e_{i+k(\text{mod } 2k+1)}$ and $e_i < e_{i+k+1(\text{mod } 2k+1)}$ for any $i \in [2k]$. However, $e_0 < e_{k+1} < e_{2k+1(\text{mod } 2k+1)} = e_0$ and we have contradiction.

Thus, we have the lemma.

2.4 Forbidden Induced Subgraphs of Cactus

In this subsection, we consider a bipartite cactus *G* contains no graph in $C_{2\times 4} \cup \mathcal{F}_2 \cup \mathcal{F}_3$ as an induced subgraph.

Lemma 10 *G* contains at most one cycle of length 6 whose depth sequence is $(0, 1^-, *, 0, 1^-, *)$ or $(0, 1^-, *, 0, *, 1^-)$,

Proof. Since any graph in \mathcal{F}_3 is not contained as a subgraph of *G*, *G* contains at most one cycle of length 6. Since Fig.2(c) and (d) are in \mathcal{F}_2 , whose depth sequence forms (0, *, *, 0, *, *). Moreover, since Fig.2(e) is in \mathcal{F}_2 , the depth sequence forms $(0, 1^-, *, 0, 1^-, *)$ or $(0, 1^-, *, 0, *, 1^-)$, and we have the lemma.

Since Fig.2(b) is in \mathcal{F}_2 , we have the following.

Lemma 11 A depth sequence of any cycle $C \subseteq G$ of length 4 forms $(1^-, 1^-, *, *)$, or $(1^-, *, 1^-, *)$.

We define *anchors* for each cycle, and we will prove that *G* has an edge-spine containing all anchors.

For a cycle of length 6 with depth sequence $(0, 1^-, *, 0, 1^-, *)$ or $(0, 1^-, *, 0, *, 1^-)$, the vertices of C_6 corresponding to * are set to be anchor. (See Lemma 10.)

For a cycle C of length 4, we set anchors as follows. (See Lemma 11.)

Case 1 the depth sequence forms $(1^-, 1^-, 1^-, 1^-)$.

arbitrary two vertices are set to be an anchor.

Case 2 the depth sequence forms $(1^-, 1^-, 1^-, 2^+)$.

```
Case 2-1 the depth sequence forms (1^-, 0, 1^-, 2^+).
```

the vertex of C corresponding to 2^+ is set to be an anchor.

Case 2-2 the depth sequence forms $(1^-, 1, 1^-, 2^+)$.

the vertices of C corresponding to 2^+ and 1 are set to be anchors.

Case 3 the depth sequence forms $(1^-, 1^-, 2^+, 2^+)$ or $(1^-, 2^+, 1^-, 2^+)$.

the vertices of *C* corresponding to 2^+ are set to be anchors. Let *S* be the minimal connected subgraph of *G* containing all

anchors. Since G contains no 3-claw, we can prove that S is a path, and there is an edge-spine P containing S.

Lemma 12 If a bipartite cactus G does not contain 3-claw as an induced subgraph, then G contains an edge spine.

Proof. Let $P = \langle u_0, u_1, \dots, u_d \rangle$ be a maximal induced path of *G*. Assume that there exists an edge $(w, w') \in E(G)$ such that

Fig. 7 $C \cup P$ in case of $V(C) \cap V(P) = \{c_0, c_1\}$.

dist_{*P*}(*w*) \geq 2 and dist_{*P*}(*w'*) \geq 2. Without loss of generality we assume that dist_{*P*}(*w'*) \geq dist_{*P*}(*w*), and dist(*u_i*, *w*) = dist_{*P*}(*w*). Let *P'* be a shortest path connecting *w'* and *u_i* containing *w*. Since *P* is maximal, $3 \leq i \leq d - 3$. Since *w'* does not adjacent with any vertex of *P*, the subgraph induced by $V(P') \cup \{u_j \mid i-3 \leq j \leq i+3\}$ contains 3-claw or its subdivision, that is, *G* contains a 3-claw as an induced subgraph.

Thus, if G does not contain 3-claw as an induced subgraph, then G contains an edge spine.

Lemma 13 Let *G* be a bipartite cactus containing an edge spine *P* and induced cycle *C* of length 6. Then, $|V(C) \cap V(P)| \ge 3$

Proof. Let *C* be the cycle represented by

$$\begin{split} V(C) \ &= \ \{c_i \mid i \in [5]\}, \text{ and} \\ E(C) \ &= \ \{(c_i, c_{i+1}) \mid i \in [4]\} \cup \{(c_0, c_5)\}. \end{split}$$

We show the lemma by contradiction.

Assume contrary that $|V(C) \cap V(P)| \le 2$. If $|V(C) \cap V(P)| = 0$ or 1, the proof is rather obvious. So, we assume without loss of generality that

 $V(C) \cap V(P) = \{u_0, u_1\}.$

Fig. 7 shows an example of *C* and *P* in case of $V(C) \cap V(P) = \{u_0, u_1\}$. Then, the endvertices of (u_3, u_4) satisfies $\operatorname{dist}_P(u_3), \operatorname{dist}_P(u_4) \ge 2$. However, this contradicts to *P* to be an edge-spine, and we have contradiction.

Thus, we have the lemma.

Lemma 14 If a bipartite cactus *G* has an edge-spine and *G* contains no induced subgraph isomorphic to Fig. 2(b), then *G* also has a maxmal edge-spine *P* such that for any induced cycle *C* of length 4 with $E(P) \cap E(C) = \{(u, v), (v, w)\}$, the degree of every neighbor of *v* outside *P* is 1.

Proof. Since G contains no induced subgraph isomorphic to Fig. 2(b),

$$\min\left\{\operatorname{depth}_{C}^{G}(u),\operatorname{depth}_{C}^{G}(v),\operatorname{depth}_{C}^{G}(w)\right\} \leq 1.$$
(11)

If depth^{*G*}_{*C*}(v) \leq 1, we have the lemma.

Otherwise, let $\langle v, y, z \rangle$ is a subpath of *G* with $y, z \notin V(P)$. Since *P* is a maximal edge-spine, *P* contains $\langle t, u, v, w, x \rangle$ as a subpath such that *t* and *x* are outside *P*. See Fig. 8. From (11), one of *t* and *x* is a degree 1 vertex. We assume without loss of generality that deg_{*G*}(*x*) = 1, i.e., *x* is the one endvertex of the edge-spine. Then, replacing *w* and *x* to *y* and *z*, respectively, we obtain a new edge-spine with $|E(P) \cap E(C)| = 1$. Thus by applying the replacement to the both ends of *P*, if any, we obtain a new edge-spine *P'* satisfying the statements of the lemma.

Fig. 9 cycle C of length 8.

Table 1 $V(e_i)$, $V(e_{i+1})$, and $N(e_{i+k+1})$ for the graph shown in Fig. 10(a).

i	$V(e_i)$	$V(e_{i+1 \pmod{2k+1}})$	$N(e_{i+k+1 \pmod{2k+1}})$
0	$\{w_0, w_1\}$	$\{w_1, w_5\}$	$\{w_3, w_4, w_5, w_6\}$
1	$\{w_1, w_2\}$	$\{w_3, w_5\}$	$\{w_5, w_6, w_7, w_{8(\text{mod } 2n)}\}$
2	$\{w_3, w_4\}$	$\{w_4, w_5\}$	$\{w_{2n-1}, w_0, w_1, w_2\}$
3	$\{w_4, w_5\}$	$\{w_6, w_5\}$	$\{w_0, w_1, w_2, w_3\}$
4	$\{w_6, w_7\}$	$\{w_0, w_5\}$	$\{w_2, w_3, w_4, w_5\}$

3. Proof Sketch of Theorem 2

From Corollary 1, Lemmas 8 and 9, we have the following. Lemma 15 If (1) of Theorem 2 holds, then (2) also holds. ■ Lemma 16 If (2) of Theorem 2 holds, then (3) also holds.

Proof. Suppose that (3) of Theorem 2 does not hold.

Case 1: *G* contain an induced cycle *C* of length 2n for some $n \ge 4$.

If $n \ge 5$, the proof is rather obvious. So, we only consider in case that n = 4. Let

$$V(C) = \{w_0, w_1, \dots, w_{2n-1}\} \text{ and}$$

$$E(C) = \{(w_0, w_1), (w_1, w_2), \dots, (w_{2n-2}, w_{2n-1}), (w_{2n-1}, w_0)\}.$$

Define that $e_0 = (w_0, w_1)$, $e_1 = (w_1, w_2)$, $e_2 = (w_3, w_4)$, $e_3 = (w_4, w_5)$, and $e_4 = (w_6, w_7)$. We now see that $\{e_i \mid i \in [4]\}$ is an edge asteroid of 2k + 1 = 5 edges in the cycle.

For an edge *e*, let V(e) be the set of the endvertices of *e*, and N(e) be the the set of neighbours of the endvertices of *e*, It should be noted that for any edge *e*, $V(e) \subseteq N(e)$. Let P_i be the subgraph induced by $V(e_i) \cup V(e_{i+1 \pmod{5}})$. From Table. 1, it is easy to verify that $V(P_i) \cap N(e_{i+k+1 \pmod{5}}) = \emptyset$, since $V(e_i) \cup V(e_{i+1 \pmod{5}}) = V(P_i)$. Therefore, P_i is a path containing e_i and $e_{i+1 \pmod{5}}$ that avoids the vertices in $N(e_{i+k+1 \pmod{5}})$.

Thus, (2) of Theorem 2 does not hold.

Case 2: *G* contains an induced subgraph *S* isomorphic to one graphs in Fig. 2.

Case 2-1: *S* is isomorphic to 3-claw shown in Fig. 2(a).

We will show that *S* contains an edge-asteroid (e_0, e_1, e_3) shown in Fig. 10(a). It should be noted that $N(e_i) = V(e_i) \cup \{w_i\}$. For any $i \in [2]$, let P_i be the subgraph induced by $N(e_i) \cup$

Fig. 10 Edge-asderoids for forbidden induced subgraphs

 $N(e_{i+1 \pmod{3}}) \cup \{c\}$. Then,

$$V(P_i) \cap N(e_{i+2 \pmod{3}})$$

= $(N(e_i) \cup N(e_{i+1 \pmod{3}}) \cup \{c\}) \cap N(e_{i+2 \pmod{3}})$
= \emptyset

Since $e_i, e_{i+1 \pmod{3}} \in E(P_i)$, P_i is a path containing e_i and $e_{i+1 \pmod{3}}$ that avoids the vertices in $N(e_{i+2 \pmod{3}})$.

Thus, (2) of Theorem 2 does not hold.

Case 2-2: *S* is isomorphic to the graph shown in Fig. 2(b).

We will show that *S* contains an edge-asteroid (e_0, e_1, e_3) as shown in Fig. 10(b). $N(e_i) = V(e_i) \cup \{w_i\}$. For i = 0, 1, let P_i be the subgraph induced by $N(e_i) \cup N(e_{i+1 \pmod{3}})$, and P_2 be the subgraph induced by $N(e_2) \cup N(e_0) \cup \{w_3\}$. For i = 0, 1,

$$V(P_i) \cap N(e_{i+2 \pmod{3}})$$

= $(N(e_i) \cup N(e_{i+1 \pmod{3}})) \cap N(e_{i+2 \pmod{3}})$
= \emptyset , and
 $V(P_2) \cap N(e_1)$
= $(N(e_0) \cup N(e_2 \cup \{w_3\})) \cap N(e_1)$
= \emptyset .

Since $e_i, e_{i+1 \pmod{3}} \in E(P_i), P_i$ is a subgraph containing e_i and $e_{i+1 \pmod{3}}$ that avoids the vertices in $N(e_{i+2 \pmod{3}})$.

Thus, (2) of Theorem 2 does not hold.

Case 2-3: *S* is isomorphic to the graph shown in Fig. 2(c). In this case, we will show that *S* contains an edge-asteroid $(e_0, e_1, e_3, e_4, e_5)$ shown in Fig. 10(c). It should be noted that

$$w_i \in V(e_i) \quad \forall i \in [4], \tag{12}$$

$$N(e_i) = V(e_i) \cup \{w_{i-1 \pmod{5}}, w_{i+1 \pmod{5}}\}\$$

 $\forall i \in [4], \tag{13}$

$$w_i \notin V(e_j) \quad \forall i, j \in [4] \text{ with } i \neq j, \text{ and}$$
 (14)

$$V(e_i) \cap V(e_j) = \emptyset \qquad \forall i, j \in [4] \text{ with } |i - j| \in \{2, 3\}.$$
(15)

Let P_i be the subgraph induced by $V(e_i) \cup V(e_{i+1 \pmod{5}})$. From (12)–(15),

 $= (V(e_i) \cup N(e_{i+1 \pmod{5}})) \cap N(e_{i+3 \pmod{5}}) \\ = \emptyset$

for any $i \in [4]$.

Since $e_i, e_{i+1 \pmod{5}} \in E(P_i)$ for each $i \in [4]$, P_i is a path containing e_i and $e_{i+1 \pmod{5}}$ that avoids the vertices in $N(e_{i+3 \pmod{5}})$.

Thus, (2) of Theorem 2 does not hold.

Case 2-4: *S* is isomorphic to the graph shown in Fig. 2(d). In this case, we will show that *S* contains an edge-asteroid

 (e_0, e_1, e_3) shown in Fig. 10(d). It should be noted that

$$N(e_i) = V(e_i) \cup \{w_i, w_{i-1 \pmod{3}}\} \quad \forall i \in [2].$$
(1~~6)~~

For $i \in [2]$, let P_i be the subgraph induced by $V(e_i) \cup \{w_i\} \cup V(e_{i+1 \pmod{3}})$. From (16), we have

$$V(P_i) \cap N(e_{i+2 \pmod{3}})$$

= $(V(e_i) \cup \{w_i\} \cup V(e_{i+1 \pmod{3}}))$
 $\cap (V(e_{i+2 \pmod{3}}) \cup \{w_{i+2 \pmod{3}}, w_{i+1 \pmod{3}}\})$
= \emptyset

for $i \in [2]$.

Since $e_i, e_{i+1 \pmod{3}} \in E(P_i), P_i$ is a path containing e_i and $e_{i+1 \pmod{3}}$ that avoids the vertices in $N(e_{i+2 \pmod{3}})$.

Thus, (2) of Theorem 2 does not hold.

Case 2-5: *S* is isomorphic to the graph shown in Fig. 2(e).

In this case, we will show that *S* contains an edge-asteroid (e_0, e_1, e_3) shown in Fig. 10(e). It should be noted that for $i = 0, 1, N(e_i) = V(e_i) \cup \{w_i\}$, and $N(e_2) = V(e_2) \cup \{w_2, w_3\}$. Therefore,

$$N(e_i) \cap N(e_j) = \emptyset \qquad \forall i \in [2].$$
(17)

For $i \in [2]$, let P_i be the subgraph induced by $N(e_i) \cup N(e_{i+1 \pmod{3}})$. From (17),

$$V(P_i) \cap N(e_{i+2 \pmod{3}}) = (N(e_i) \cup N(e_{i+1 \pmod{3}}) \cap N(e_{i+2 \pmod{3}}))$$

= $\emptyset \quad \forall i \in [2].$

Since $e_i, e_{i+1 \pmod{3}} \in E(P_i), P_i$ is a path containing e_i and $e_{i+1 \pmod{3}}$ that avoids the vertices in $N(e_{i+2 \pmod{3}})$.

Thus, (2) of Theorem 2 does not hold.

Case 3: *G* contains an induced subgraph *S* isomorphic to one of graphs in Fig. 4.

Since G contains two induced cycles of length 6, (2) of Theorem 2 does not holds.

Thus, we have the lemma.

Lemma 17 If (3) of Theorem 2 holds, then (1) also holds. We will show Lemma 17 in Section 3.2. From Lemmas 15, 16, and 17, we have Theorem 2. As a corollary of Theorem 2, we also have Theorem 1. In the proof of Lemma 17 in we show the construction of ray representation of *G* along an edge-spine. Since such an edge-spine can be found in polynomial time, we can recognize whether *G* is 3DORG. Thus, we have Theorem 3.

Before proving Lemma 17, we need some preliminaries.

Fig. 12 Example of blue vertices.

3.1 Preliminaries of Lemma 17

For a graph *S* and a vertex $u \in V(S)$, if a vertex *u* is represented by a red circle in a figure of *S*, the figure implies the graph obtained from *S* and a rooted tree of height at most 1 by identifying *u* and the root of the tree. Such a vertex is called a red vertex. Fig. 11(a) is an example of a graph represented by Fig. 11(b).

A graph represented by Fig. 11(b) is called a *diamond*, and the vertex r is the *root* of it.

For a graph S and a vertex $u \in V(S)$, if a vertex u is represented by a blue circle in a figure of S, the figure implies the graph obtained from S, a number of diamonds, and a rooted trees of height at most 2 by identifying u and the roots of those diamonds and trees. Such a vertex is called a blue vertex. Fig. 12(a) is an example of a graph represented by Fig. 12(b).

Rays corresponding to vertices of a diamond shown in Fig. 13(a) can be drawn in an *L*-shaped area and R_a as seen in Fig. 13(b), where *L*-shaped area is represented by blue area in the figure. Since a large *L*-shaped area can contain a number of small *L*-shaped areas, we have the followning.

Proposition 3 A blue vertex rooted at r can be drawn in an *L*-shaped are and R_r as seen in Fig. 13(c).

From Proposition 3, we also have that Fig. 12(b) can be represented by Fig. 14(a), that is, we have the following.

Proposition 4 A ray representation for Fig. 12(b) can be drawn in an *L*-shaped area and two rays R_u and R_v as shown in Fig. 14(b).

For a diamond with two blue vertices shown in Fig. 15(a), we have the following.

Proposition 5 A ray representation for Fig. 15(a) can be drawn in an *L*-shaped area and two rays R_u and R_w as shown in Fig. 15(b).

3.2 Proof of Lemma 17

In this section, we show an example of a bipartite cactus and construction of its ray representation.

From Lemmas 10, 11, 12, 13, 14, we can prove that a bipartite cactus containing no graph in \mathcal{F}_1 can be decomposed into graphs which form Fig. 12(b), Fig. 15(a), and a cycle of length 6 whose depth sequence is $(0, 1^-, 2^-, 0, 1^-, 2^-)$ or $(0, 1^-, 2^-, 0, 2^-, 1^-)$.

Fig. 14 Ray representation of a graph shown in Fig. 12(b).

Fig. 15 Diamond with 2 blue vertices and its ray representation.

Fig. 16 Example of a cactus and its ray representation

An example of such graph G is shown in Fig. 16(a), where $\langle w_1, w_2, \ldots, w_9 \rangle$ is an edge-spine of G. Applying Propositions=4 and 5 along the edge-spine, we can obtain a ray representation shown in Fig. 16(b).

Thus, we have the lemma.

4. Proof Sketch of Theorem 3

The following can be done in polynomial time.

- enumerate all cycles in a cactus.
- compute depth sequences of cycles in a cactus.
- compute whether a cactus contain 3-claw.

Therefore, we can compute whether a bipartite cactus contain a

graph in $C_{2\times 4} \cup \mathcal{F}_2 \cup \mathcal{F}_3$ as an induced subgraph.

Thus from Theorem 2, we have Theorem 3.

References

- A.A. Al-Yamani, S. Ramsundar, and D.K. Pradhan, "A defect toler-ance scheme for nanotechnology circuits," IEEE Tranesaction on Circuits and Systems, vol.26, no.1, pp.68–77, 2009.
- [2] I. Mustată, K. Nishikawa, S. Tayu, and S. Ueno, "On orthogonal ray graphs," Discete Applied Mathematics, vol.158, no.15, pp.1650–1659, 2010.
- [3] C.G. Plaxton, "Vertex-weighted matching in two-directional orthogonal," Proc. 24th International Symposium on Algorithgms and Computation (ISAAC), Lecture Notes in Computer Science, vol.8283, pp.524– 534, 2013.
- [4] W. Rao, A. Orailoglu, and R. Karri, "Logic mapping in crossbarbasednanoarchitectures," IEEE Design and Test of Computers, vol.26, no.1, pp.68–77, 2009.
- [5] A.M.S. Shrestha, A. Takaoka, S. Tayu, and S. Ueno, "On two problems of nano-pla design," IEICE TRANSACTIONS on Information and Systems, vol.E94-D, no.1, pp.35–41, 2011.
- [6] A.M.S. Shrestha, S. Tayu, and S. Ueno, "On orthogonal ray graphs," Discete Applied Mathematics, vol.158, no.15, pp.1650–1659, 2010.
- [7] A.M.S. Shrestha, S. Tayu, and S. Ueno, "Bandwidth of convex bipartite graphs and related graphs," Information Processing Letters, vol.112, no.11, pp.411–417, 2012.
- [8] M.B. Tahoori, "A mapping algorithm for defect-tolerance of reconfigurable nano-architectures," ICCAD '05: Proc. 2005 IEEE/ACM International Conference on Computer-Aided Desig, pp.668–672, 2005.
- [9] A. Takaoka, S. Tayu, and S. Ueno, "Dominatinog sets in two-directional orthogonal ray graphs," IEICE TRANSACTIONS on Information and Systems, vol.E98-D, no.8, pp.1592–1595, 2015.