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On the Three-Directional Ray Cacti

Hiroki Katsumata1 Satoshi Tayu1

Abstract: A connected graph is called a cactus if any two cycles have at most one vertex in common. A cactus is

called a pseudotree if it contains at most one cycle. In this paper, We show that the characterization of 3-directional

orthogonal ray cacti and 3-directional orthogonal ray pseudotrees. We also show that the recognition of 3-directional

orthogonal ray cacti can be solved in polynomial time.

1. Introduction

A bipartite graph G with a bipartition (X,Y) is called an ORG

(orthogonal ray graph) if there exist a family of non-intersecting

rays (half-lines) Ru (u ∈ X), parallel to the x-axis in the xy-plane,

and a family of non-intersecting rays Rv (v ∈ Y), parallel to the

y-axis such that for any u ∈ X and v ∈ Y , (u, v) ∈ E(G) if and only

if Ru and Rv intersect. An ORG is called a 3DORG (3-directional

orhtogonal ray graph) if every vertical ray has the same direction,

or every holizontal ray has the same direction. An ORG is called

a 2DORG (2-directional orhtogonal ray graph) if every vertical

ray has the same direction, and every holizontal ray also has the

same direction. By definition, any 2DORG is a 3DORG, and any

3DORG is an ORG.

A mapping of a sum-of-product onto nano-programable logic

array (nano-PLA) is inivestigated in the literature [1], [4], [8].

Since a nano-PLA can be represented by ORG and/or 3DORG

[5], finding characterizations of such graphs is very important,

and some problems are investigated for these graphs [3], [5], [7],

[9].

A cactus is a connected graph in which any two cycles have at

most one vertex in common. A pseudotree is a connected graph

containing at most one cycle. A tree is a pseudotree, and pseu-

dotree is a cactus by defintion.

An edge-asteroid is a sequence of edges (e0, e1, . . . , e2k) such

that for each 0 ≤ i ≤ 2k, there exists a path containing ei

and ei+1 (mod 2k+1) that avoids the neighbors of the end-vertex of

ek+i+1 (mod 2k+1). An A5E (asteroid quintuple of edges) is a se-

quence of five edges (e0, e1, e2, e3, e4) such that for any 0 ≤ i ≤ 4,

there exists a path from ei to ei+1 (mod 5) that avoids the neighbors

of the end-vertices of ei−1 (mod 5) and ei+2 (mod 5).

Let F1 = {T0,T1,T2,T3} be the set of four trees shown in

Fig.1. The following characterizations can be found in the lit-

erature [2], [6].

Theorem I A bipartite graph G is a 2DORG if and only if it

contains no edge-asteroid and no induced cycle of length at least
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(a) T0. (b) T1.

(b) T2. (d) T3.

Fig. 1 Trees in F1 .

6.

Theorem II The following statements are equivalent for a

tree T ;

( 1 ) T is a 2DORG;

( 2 ) T is a 3DORG;

( 3 ) T contains no edge-asteroid;

( 4 ) T contains no 3-claw shown in Fig.2(a) as a subtree.

Theorem III The following statementes are equivarent for a

tree T :

• T is an ORG;

• T contains no A5E;

• T contains no tree in F1 as a minor.

Let F2 be the set of graphs shown in Fig.2. For any integer
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Fig. 2 Set F2 of forbidden induced subgraphs.
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Fig. 3 Cycles in C2x4 .

n ≥ 2, let C2n be the cycle of length 2n, and C2×n = {C2i | i ≥ n}.

C2×4 is the set of cycles shown in Fig. 9 for i ≥ 4. Let C6 · C6,

C6-C6, and 2 × C6 be the graphs shown in Fig.4(a), (b), and (c),

respectively. The characterization of ORG and 3DORG has been

open.

We show in this paper the following, where Theorem 1 is ob-

tained as a corollary of Theorem 2.

Theorem 1 The following statements are equivalent for a bi-

partite pseudotree G:

( 1 ) G is a 3DORG;

( 2 ) G contains no edge-asteroid;

( 3 ) G contains no graph in C2×4 ∪ F2 as an induced subgraph.

Theorem 2 The following statements are equivalent for a bi-

partite cacti G:

( 1 ) G is a 3DORG;

( 2 ) G contains no edge-asteroid and no pair of cycles of length

6;

( 3 ) G contains no graph in C2×4 ∪ F2 ∪ F3 as an induced sub-

graph.

Theorem 3 The recognition of 3-directional orthogonal ray

cacti is solved in polynomial time.

2. Preliminaries

2.1 Ray Representation of Graphs

In this section, we assume that G is a connected 3-directional

orthogonal ray graph, with diameter at least 5. We assume with-

out loss of generality that rays of a 3DORG G parallel to y-axis

(a) C6 ·C6 . (b) C6-C6.

(c) 2 ×C6.

Fig. 4 Set F3 of forbidden induced subgraphs.

y

x

AU(u1, v0) ∩ AU (u2, v1)

ALD(u1, v0) ARD(u2, v1)
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u2

Ru0
[v0, v1]

Fig. 5 Example of a Ray Representation.

are downward direction. For a vertex v of G, we denote by

(x(v), y(v)) the coordinate of the end point of Rv. For an edge

e = (u, v) of G, let Ru and Rv be the rays corresponding to u and

v, respectively, and ρ(e) = (x(e), y(e)) be the cross point of Ru

and Rv. We denote by the sequence 〈w1, w2, . . . , wp〉 of the ver-

tices the path with the vertex set {w1, w2, . . . , wp} and edge set

{(wi, wi+1) | 1 ≤ i ≤ p− 1}. Let VD(G) be the set of vertices corre-

sponding to downward rays, and VH(G) = V(G) − VD(G). Define

that

xmin = min{x(v) | v ∈ VD(G)},

xmax = max{x(v) | v ∈ VD(G)},

ymin = min{y(v) | u ∈ VH(G)}, and

ymax = max{y(v) | u ∈ VH(G)}.

For (w, w′) ∈ E(G), let Rw[w′] be a partial ray of Rw whose

end point is just the cross point of Rw and Rw′ . Since Rw and

Rw′ intersect, Rw and Rw′ divide the plane into two areas say

AD(w, w′) and AU(w, w′), where AU(w, w′) is the area containing

{(x, y) | y ≥ ymax}.

For any vertex w ∈ V(G) and its adjacent vertices w′, w′′ in

G, let Rw[w′, w′′] be a line segment with endpoints ρ((w, w′)) and

ρ((w,w′′)). For an induced path P = 〈w0, w1, . . . , wp〉 of G, let

B[P] = Rw0
[w1] ∪ Rwp

[wp−1] ∪

p−1
⋃

i=2

Rwi
[wi−1, wi+1].

The upper and lower sides of B[P] are denoted by AU [P] and

AD[P], respectively.

As an example, we show in Figure 5 a ray representation of a
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path P = 〈u1, v0, u0, v1, u2〉, such that Ru0
and Ru1

are leftward rays

with xu0
< xu1

, Rv0 and Rv1 are downward rays with xv0 < xv1 , and

Ru2
is a rightward ray, where (xv, yv) is the endpoint of the ray Rv

corresponding to v. Green rays are Rv0 [u1] and Ru1
[v0] dividing

the plane into two areas AD(u1, v0) and AU(u1, v0), and red rays

are Rv1 [u2] and Ru2
[v1] dividing into AD(u2, v1) and AU (u2, v1). A

blue line segment shows Ru0
[v0, v1]. AD[〈u1, v0, u1, v1, u2〉] is the

area shown by diagonal lines.

By definition, we have the following.

Lemma 1 Let P = 〈w0, w1, . . . , wp〉 be an induced subpath of

a 3DORG. Then, xy-plane is separated by B[P] into two regions

For an edge (u, v) of a 3DORG G with u ∈ X, Let

ALD(u, v) = {(x, y) | x < x(v), y < y(u)}, and

ARD(u, v) = {(x, y) | x > x(v)} ∪ {(x, y) | y > y(u)}.

It should be noted that B[〈u, v〉] separates the xy-plane.

For a graph G and vertices u, v ∈ V(G), let distG(u, v) be the dis-

tance between u and v in G. For a subgraph S of G and w ∈ V(G),

let distG(S , w) = minu∈V(S ) distG(u, w). An induced subpath of G

is called an edge-spine of G if at least one endvertex of any edge

of G is within distance one from at least one vertex of the path.

Lemma 2 Let R(G) be a 3-directional orthogonal ray repre-

sentation of G, and let uL and uR be the vertices corresponding

the leftward and rightward rays of minimum y-coordinates, re-

spectively. Then, an induced uL-uR path P of G is an edge-spine.

Proof. We assume without loss of generality that R(G) is not a

2-directional orthogonal ray representation.

Let vL [vR] be the adjacent vertex of uL [uR], in P. It suffices to

show that for any edge (u, v),

distG(P, u) ≤ 1 or (1)

distG(P, v) ≤ 1. (2)

Case 1: u is a leftward ray.

If u or v is in P, (1) or (2) holds. So, we assume that that u and v

are outside P. If a vertex w ∈ V(P) has a downward ray Rw with

x(w) < x(vL), Rw and RuL
intersect, and this contradicts to P to be

an induced path. Therefoer,

{(x, y) | x < x(vL), y > y(uL)} ∩ B[P] = ∅, i.e.,

{(x, y) | x < x(vL), y > y(uL)} ⊂ AU[P].

Since u is leftward and y(u) > y(uL), a partial ray {(x, y(u)) | x <

x(vL)} of Ru is contained in AU [P]. Therefore, we have

AU [P] ∩ Ru , ∅. (3)

Since Rv is downward,

{(x(v), y) | y < ymin} ⊂ Rv,

and we have

AD[P] ∩ Rv , ∅. (4)

From Lemma 1, (3), and (4), we have that Ru ∪ Rv intersect B[P],

i.e., Ru or Rv intersects B[P].

Thus, we have (1) or (2).

Case 2: u is a righttward ray.

By the similar arguments to the proof of Case 1, we have the

lemma.

As a corollary of Lemma 2, we have the following.

Corollary 1 A connected 3DORG has an edge-spine as an

induced subgraph.

It should be noted that there is connected bipartite graph con-

taining an edge-spine as an induced subgraph, but not a 3DORG.

2.2 3-Directional Orthogonal Ray Graph with an Induced

Subcycle of Length 6

In this subsection, we consisder a ray representation of a

3DORG G containing C6 as an induced subgraph. For a positive

integer i, we denote that [i] = {0, 1, . . . , i}. Define that

V(C6) = {wi | i ∈ [5]}, and

E(C6) = {(wi, wi+1(mod 6)) | i ∈ [5]}.

Consider any ray representation R(G) of G. For any i ∈ [5], let

Ri be the ray of R(G) corresponding to wi, and (xi, yi) be the xy-

coordinate of the end point of Ri. We assume without loss of

generality that R0,R2,R4 are vertical, and R2 and R4 are the left

and right most vertical rays, respectively, i.e., x2 < x0 < x4.

We now see that

y1, y5 ≤ y0 < y3 ≤ y2, y4 (5)

Since R3 intersects both R2 and R4, we have y2, y4 ≥ y3,

{(x, y3) | x2 ≤ x4} ⊂ R3 and (6)

(x0, y3) ∈ R3. (7)

Since R0 and R3 does not intersect,

(x0, y3) < R0 = {(x0, y) | y ≤ y0}

by (7). Therefore, we have y3 > y0. Since R1 and R5 intersect R0,

y1, y5 < y0. Thus, we have (5).

We next see that

x2 < x5 ≤ x0 ≤ x1 < x4, (8)

and that R1 and R5 are leftward and rightward rays, respectively.

Since R1 intersects both R0 and R2,

{(x, y1) | x2 ≤ x ≤ x0} ⊂ R1. (9)

From x0 < x4 and y1 < y4, R1 is leftward and x1 < x4, since R1

does not intersect R4. Thus from (9), x0 ≤ x1. Similarly, we also

have x2 < x5 ≤ x0 and R5 to be rightward.

Let YL
min

(C6) and YR
min

(C6) be the minimum y-coordinates of

leftward and rightward rays corresponding to a vertex of C6, re-

spectively. Similarly, let Xmin(C6) and Xmax(C6) be the minimum

and maximum x-coordinates of downward rays corresponding to

a vertex of C6, respectively. Let

ALD(C6) = {(x, y) | x < Xmin, y < YL
min(C6)} and

ARD(C6) = {(x, y) | x > Xmax, y < YR
min(C6)}.
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Fig. 6 Ray Representation of C6.

Figure 6 shows an example of a ray representation of C6 in

case that R3 is leftward, and y1 < y5. Since R3 intersects both R2

and R4, if R3 is leftward, then x3 ≥ x4 and otherwise, x3 ≤ x2.

ALD(C6) and ARD(C6) are shown by yellow and cyan areas, re-

spectively.

A connected graph H with a subgraph S is said to be edge-

separable by S if all vertices in V(S ) belong to different con-

nected components in H − E(S ). For any v ∈ V(S ) and the con-

nected component C of H − E(S ) containing v, we denote by

depthH
S (v) = max

w∈V(C)
distC(v, c).

By definition, we have the following.

Lemma 3 A connected graph H is a cactus if and only if it is

edge-separable by any induced subcycle.

Lemma 4 If G is edge-separable by C6 then depthG
C6

(v0) =

depthG
C6

(v3) = 0.

Proof. If v0 is adjacent with a vertex u outside C6, then Ru is

holizontal. Let P be the path induced by {v2, v3, v4}. It should be

noted that the cross point (x0, yu) of R0 and Ru is inside AD[P]. If

Ru is rightward ray, {(x, yu) | x > x0} ⊂ Ru. Therefore, Ru inter-

sects R4, since x0 < x4 and yu < y4. This implies that u is also

adjacent with v4. Thus, G is not edge-separable by C6. Similarly,

if Ru is leftward ray, G is not edge-separable.

Therefore, v0 is not adjacent with any vertex outside C6, and

depthG
C6

(v0) = 0.

If v3 is adjacent with a vertex u outside C6, then Ru is a down-

ward ray containing (xu, y3), the cross point of Ru and R3. Let

P = 〈v1, v0, v5〉. Since (xu, y3) ∈ AU[P] and Ru is a downward ray,

Ru intersects B[P]. Therefore, G is not edge-separable.

Therefore, v3 is not adjacent with any vertex outside C6, and

depthG
C6

(v0) = 0.

Thus, we have the lemma.

For i ∈ [5], let Γi be the connected component of G − E(C6)

containing vi.

Lemma 5 If G is edge-separable by C6, and Γi contains a

vertex w independent from C6 with distG(w, vi) = 2 for some

i ∈ {1, 2}, then there exists a vertex z ∈ V(Γi) adjacent with both

vi and w in Γi such that Rz ∩ ALD(C6) , ∅.

Proof. Consider in case of i = 1. The lemma can be proved

similarly when i = 2.

Let z be a vertex adjacent with both w and v1, and we show the

lemma by contradiction. Suppose that

Rz ∩ ALD(C6) = ∅. (10)

From (z, v1) ∈ E(C6) and (10), x2 < x(z) ≤ x1, since Rz is vertical.

Thus from (6) and (10), y(z) < y3 ≤ y2. Therefore, Rz intersects

R2, and we have contradiction. Thus, Rz ∩ ALD(C6) = ∅, and we

have the lemma.

Lemma 6 If G is edge-separable by C6, then depthG
C6

(v1) ≤ 1

or depthG
C6

(v2) ≤ 1.

Proof. Assume contrary that depthG
C6

(v1) ≥ 2 and depthG
C6

(v2) ≥

2. From Lemma 5, Γ1 and Γ2 contain vertices z1 and z2 such that

Rz1
∩ ALD(C6) , ∅ and

Rz2
∩ ALD(C6) , ∅,

respectively. Since Rz1
is vertical and (z1, v1) ∈ E(Γ1), we have

{(x(z1), y) | y ≤ y1} ⊆ Rz1
.

Similarly, we also have

{(x, y(z2)) | x ≤ x2} ⊆ Rz2
.

Therefore, Rz1
and Rz2

intersect, and we have contradiction. Thus,

depthG
C6

(v1) ≤ 1 or depthG
C6

(v2) ≤ 1, and we have the lemma.

By similar arguments to the proof of Lemma 6, we also have the

following.

Lemma 7 If G is edge-separable by C6, then depthG
C6

(v4) ≤ 1

or depthG
C6

(v5) ≤ 1.

Lemmas 4, 6, and 7, we have the following.

Corollary 2 If G is edge-separable by C6, depthG
C6

(v0) =

depthG
C6

(v3) = 0, min(depthG
C6

(v1), depthG
C6

(v2)) ≤ 1, and

min(depthG
C6

(v4), depthG
C6

(v5)) ≤ 1.

A sequence of such depths of a subcycle C is called a

depth-sequence of C. It should be noted that the following

depth-sequences are equivalent; (1, 2, 3, 4, 5, 6), (6, 1, 2, 3, 4, 5),

(6, 5, 4, 3, 2, 1), and so on. We use depthG
C (v) = 2+ instead of

depthG
C (v) = l for any integer l ≥ 2, and depthG

C (v) = 1− instead

of depthG
C (v) = 0 or 1. We also use ∗ as a wild card in the depth

sequence. Corollary2, we have the following.

Lemma 8 If a 3DORG has an induced cycle C6 of

length 6 then the depth sequcen of C6 is (0, 1−, ∗, 0, 1−, ∗) or

(0, 1−, ∗, 0, ∗, 1−).

In particular, if C6 has two vertex with depth at least 2, then the

depth sequcen of C6 is (0, 1−, 2+, 0, 1−, 2+) or (0, 1−, 2+, 0, 2+, 1−).

2.3 Edge-Spine and Edge-Asteroid

An induced cycle of length 6 is said to be feasible if its depth

sequence forms (0, ∗, ∗, 0, ∗, ∗).

Lemma 9 If a bipartite cactus G has an edge-spine P and any

induced cycle of length 6 is feasible, then G has no edge-asteroid.

Proof. We show the lemma by contradiction.

Suppose that G has a lngest edge-spine P = 〈v0, v1, . . . , vp〉 and

an edge-asteroid (e0, e1, . . . , e2k).

For i ∈ [2k], we define J(ei) is the minimum integer j such that

v j adjacent with one endvertex of ei.

ⓒ 2020 Information Processing Society of Japan 4

Vol.2020-AL-180 No.6
2020/11/25



IPSJ SIG Technical Report

Without loss of generality that J(e0) ≤ J(ei) for any i ∈ [2k].

We denote by ek ≺ el if one of the following holds

• J(ek) < J(el), or

• J(ek) = J(el) = j and there exist a path connecting ek and

v j−1 avoinding v j.

Since G is a bipartite cactus, ek ⊀ el if ek ≺ el.

Then, we can prove the following two propositions.

Proposition 1 If ei ≺ ei+k+1(mod 2k+1), then ei+1(mod 2k+1) ≺

ei+k+1(mod 2k+1).

Proposition 2 If ei ≺ ei+k(mod 2k+1), then ei ≺ ei+k+1(mod 2k+1).

From these proposition, we have ei ≺ ei+k(mod 2k+1) and ei ≺

ei+k+1(mod 2k+1) for any i ∈ [2k]. However, e0 ≺ ek+1 ≺

e2k+1(mod 2k+1) = e0 and we have contradiction.

Thus, we have the lemma.

2.4 Forbidden Induced Subgraphs of Cactus

In this subsection, we consider a bipartite cactus G contains no

graph in C2×4 ∪ F2 ∪ F3 as an induced subgraph.

Lemma 10 G contains at most one cycle of length 6 whose

depth sequence is (0, 1−, ∗, 0, 1−, ∗) or (0, 1−, ∗, 0, ∗, 1−),

Proof. Since any graph in F3 is not contained as a subgraph of

G, G contains at most one cycle of length 6. Since Fig.2(c) and (d)

are in F2, whose depth sequence forms (0, ∗, ∗, 0, ∗, ∗). Moreover,

since Fig.2(e) is in F2, the depth sequence forms (0, 1−, ∗, 0, 1−, ∗)

or (0, 1−, ∗, 0, ∗, 1−), and we have the lemma.

Since Fig.2(b) is in F2, we have the following.

Lemma 11 A depth sequence of any cycle C ⊆ G of length 4

forms (1−, 1−, ∗, ∗), or (1−, ∗, 1−, ∗).

We define anchors for each cycle, and we will prove that G has

an edge-spine containing all anchors.

For a cycle of length 6 with depth sequence (0, 1−, ∗, 0, 1−, ∗)

or (0, 1−, ∗, 0, ∗, 1−), the vertices of C6 corresponding to ∗ are set

to be anchor. (See Lemma 10.)

For a cycle C of length 4, we set anchors as follows. (See

Lemma 11.)

Case 1 the depth sequence forms (1−, 1−, 1−, 1−).

arbitrary two vertices are set to be an anchor.

Case 2 the depth sequence forms (1−, 1−, 1−, 2+).

Case 2-1 the depth sequence forms (1−, 0, 1−, 2+).

the vertex of C corresponding to 2+ is set to be an anchor.

Case 2-2 the depth sequence forms (1−, 1, 1−, 2+).

the vertices of C corresponding to 2+ and 1 are set to be

anchors.

Case 3 the depth sequence forms (1−, 1−, 2+, 2+) or

(1−, 2+, 1−, 2+).

the vertices of C corresponding to 2+ are set to be anchors.

Let S be the minimal connected subgraph of G containing all

anchors. Since G contains no 3-claw, we can prove that S is a

path, and there is an edge-spine P containing S .

Lemma 12 If a bipartite cactus G does not contain 3-claw as

an induced subgraph, then G contains an edge spine.

Proof. Let P = 〈u0, u1, . . . , ud〉 be a maximal induced path

of G. Assume that there exists an edge (w, w′) ∈ E(G) such that

P
u0 u1

u2

u3u4

u5

Fig. 7 C ∪ P in case of V(C) ∩ V(P) = {c0, c1}.

distP(w) ≥ 2 and distP(w′) ≥ 2. Without loss of generality we

assume that distP(w′) ≥ distP(w), and dist(ui, w) = distP(w). Let

P′ be a shortest path connecting w′ and ui containing w. Since P

is maximal, 3 ≤ i ≤ d − 3. Since w′ does not adjacent with any

vertex of P, the subgraph induced by V(P′)∪{u j | i−3 ≤ j ≤ i+3}

contains 3-claw or its subdivision, that is, G contains a 3-claw as

an induced subgraph.

Thus, if G does not contain 3-claw as an induced subgraph,

then G contains an edge spine.

Lemma 13 Let G be a bipartite cactus containing an edge

spine P and induced cycle C of length 6. Then, |V(C)∩V(P)| ≥ 3

Proof. Let C be the cycle represented by

V(C) = {ci | i ∈ [5]}, and

E(C) = {(ci, ci+1) | i ∈ [4]} ∪ {(c0, c5)}.

We show the lemma by contradiction.

Assume contrary that |V(C) ∩ V(P)| ≤ 2. If |V(C) ∩ V(P)| = 0

or 1, the proof is rather obvious. So, we assume without loss of

generality that

V(C) ∩ V(P) = {u0, u1}.

Fig. 7 shows an example of C and P in case of V(C) ∩

V(P) = {u0, u1}. Then, the endvertices of (u3, u4) satisfies

distP(u3), distP(u4) ≥ 2. However, this contradicts to P to be an

edge-spine, and we have contradiction.

Thus, we have the lemma.

Lemma 14 If a bipartite cactus G has an edge-spine and G

contains no induced subgraph isomorphic to Fig. 2(b), then G

also has a maxmal edge-spine P such that for any induced cycle

C of length 4 with E(P) ∩ E(C) = {(u, v), (v, w)}, the degree of

every neighbor of v outside P is 1.

Proof. Since G contains no induced subgraph isomorphic to

Fig. 2(b),

min
{

depthG
C (u), depthG

C (v), depthG
C (w)
}

≤ 1. (11)

If depthG
C (v) ≤ 1, we have the lemma.

Otherwise, let 〈v, y, z〉 is a subpath of G with y, z < V(P). Since

P is a maximal edge-spine, P contains 〈t, u, v, w, x〉 as a subpath

such that t and x are outside P. See Fig. 8. From (11), one of t

and x is a degree 1 vertex. We assume without loss of generality

that degG(x) = 1, i.e., x is the one endvertex of the edge-spine.

Then, replacing w and x to y and z, respectively, we obtain a new

edge-spine with |E(P)∩E(C)| = 1. Thus by applying the replace-

ment to the both ends of P, if any, we obtain a new edge-spine P′

satisfying the statements of the lemma.

ⓒ 2020 Information Processing Society of Japan 5

Vol.2020-AL-180 No.6
2020/11/25



IPSJ SIG Technical Report

P

Q′

t u

v
w x

y

z

Fig. 8 around cyle C.
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Fig. 9 cycle C of length 8.

Table 1 V(ei), V(ei+1), and N(ei+k+1) for the graph shown in Fig. 10(a).

i V(ei) V(e
i+1 (mod 2k+1)

) N(e
i+k+1 (mod 2k+1)

)

0 {w0, w1} {w1, w5} {w3, w4 , w5 , w6}

1 {w1, w2} {w3, w5} {w5, w6 , w7 , w
8(mod 2n)

}

2 {w3, w4} {w4, w5} {w2n−1, w0 , w1 , w2}

3 {w4, w5} {w6, w5} {w0, w1 , w2 , w3}

4 {w6, w7} {w0, w5} {w2, w3 , w4 , w5}

3. Proof Sketch of Theorem 2

From Corollary 1, Lemmas 8 and 9, we have the following.

Lemma 15 If (1) of Theorem 2 holds, then (2) also holds.

Lemma 16 If (2) of Theorem 2 holds, then (3) also holds.

Proof. Suppose that (3) of Theorem 2 does not hold.

Case 1: G contain an induced cycle C of length 2n for some

n ≥ 4.

If n ≥ 5, the proof is rather obvious. So, we only consider in

case that n = 4. Let

V(C) = {w0, w1, . . . , w2n−1} and

E(C) = {(w0, w1), (w1, w2), . . . , (w2n−2, w2n−1),

(w2n−1, w0)}.

Define that e0 = (w0, w1), e1 = (w1, w2), e2 = (w3, w4), e3 =

(w4, w5), and e4 = (w6, w7). We now see that {ei | i ∈ [4]} is an

edge asteroid of 2k + 1 = 5 edges in the cycle.

For an edge e, let V(e) be the set of the endvertices of e,

and N(e) be the the set of neighbours of the endvertices of e,

It should be noted that for any edge e, V(e) ⊆ N(e). Let Pi

be the subgraph induced by V(ei) ∪ V(ei+1 (mod 5)). From Ta-

ble. 1, it is easy to verify that V(Pi) ∩ N(ei+k+1 (mod 5)) = ∅, since

V(ei)∪V(ei+1 (mod 5)) = V(Pi). Therefore, Pi is a path containing

ei and ei+1 (mod 5) that avoids the vertices in N(ei+k+1 (mod 5)).

Thus, (2) of Theorem 2 does not hold.

Case 2: G contains an induced subgraph S isomorphic to one

graphs in Fig. 2.

Case 2-1: S is isomorphic to 3-claw shown in Fig. 2(a).

We will show that S contains an edge-asteroid (e0, e1, e3)

shown in Fig. 10(a). It should be noted that N(ei) = V(ei) ∪ {wi}.

For any i ∈ [2], let Pi be the subgraph induced by N(ei) ∪

e2

e1

e0

c

w0

w1

w2 e2

e1

e0

w0

w1

w2

w3

(a) (b)

e4

e3

e2

e1

e0w0

w1

w2w3

w4
e2

e1

e0

w0

w1

w2

(c) (d)

e2

e1

e0

w0

w1

w2

w3

(e)

Fig. 10 Edge-asderoids for forbidden induced subgraphs

N(ei+1 (mod 3)) ∪ {c}. Then,

V(Pi) ∩ N(ei+2 (mod 3))

= (N(ei) ∪ N(ei+1 (mod 3)) ∪ {c}) ∩ N(ei+2 (mod 3))

= ∅

Since ei, ei+1 (mod 3) ∈ E(Pi), Pi is a path containing ei and

ei+1 (mod 3) that avoids the vertices in N(ei+2 (mod 3)).

Thus, (2) of Theorem 2 does not hold.

Case 2-2: S is isomorphic to the graph shown in Fig. 2(b).

We will show that S contains an edge-asteroid (e0, e1, e3) as

shown in Fig. 10(b). N(ei) = V(ei) ∪ {wi}. For i = 0, 1, let Pi

be the subgraph induced by N(ei) ∪ N(ei+1 (mod 3)), and P2 be the

subgraph induced by N(e2) ∪ N(e0) ∪ {w3}. For i = 0, 1,

V(Pi) ∩ N(ei+2 (mod 3))

= (N(ei) ∪ N(ei+1 (mod 3))) ∩ N(ei+2 (mod 3))

= ∅, and

V(P2) ∩ N(e1)

= (N(e0) ∪ N(e2 ∪ {w3})) ∩ N(e1)

= ∅.

Since ei, ei+1 (mod 3) ∈ E(Pi), Pi is a subgraph containing ei and

ei+1 (mod 3) that avoids the vertices in N(ei+2 (mod 3)).

Thus, (2) of Theorem 2 does not hold.

Case 2-3: S is isomorphic to the graph shown in Fig. 2(c).

In this case, we will show that S contains an edge-asteroid

(e0, e1, e3, e4, e5) shown in Fig. 10(c). It should be noted that

wi ∈ V(ei) ∀i ∈ [4], (12)

N(ei) = V(ei) ∪ {wi−1 (mod 5), wi+1 (mod 5)}

∀i ∈ [4], (13)

wi < V(e j) ∀i, j ∈ [4] with i , j, and (14)

V(ei) ∩ V(e j) = ∅ ∀i, j ∈ [4] with |i − j| ∈ {2, 3}. (15)

Let Pi be the subgraph induced by V(ei) ∪ V(ei+1 (mod 5)). From

(12)–(15),
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V(Pi) ∩ N(ei+3 (mod 5))

= (V(ei) ∪ N(ei+1 (mod 5))) ∩ N(ei+3 (mod 5))

= ∅

for any i ∈ [4].

Since ei, ei+1 (mod 5) ∈ E(Pi) for each i ∈ [4], Pi is a

path containing ei and ei+1 (mod 5) that avoids the vertices in

N(ei+3 (mod 5)).

Thus, (2) of Theorem 2 does not hold.

Case 2-4: S is isomorphic to the graph shown in Fig. 2(d).

In this case, we will show that S contains an edge-asteroid

(e0, e1, e3) shown in Fig. 10(d). It should be noted that

N(ei) = V(ei) ∪ {wi, wi−1 (mod 3)} ∀i ∈ [2]. (16)

For i ∈ [2], let Pi be the subgraph induced by V(ei) ∪ {wi} ∪

V(ei+1 (mod 3)). From (16), we have

V(Pi) ∩ N(ei+2 (mod 3))

= (V(ei) ∪ {wi} ∪ V(ei+1 (mod 3)))

∩ (V(ei+2 (mod 3)) ∪ {wi+2 (mod 3), wi+1 (mod 3)})

= ∅

for i ∈ [2].

Since ei, ei+1 (mod 3) ∈ E(Pi), Pi is a path containing ei and

ei+1 (mod 3) that avoids the vertices in N(ei+2 (mod 3)).

Thus, (2) of Theorem 2 does not hold.

Case 2-5: S is isomorphic to the graph shown in Fig. 2(e).

In this case, we will show that S contains an edge-asteroid

(e0, e1, e3) shown in Fig. 10(e). It shouid be noted that for i = 0, 1,

N(ei) = V(ei) ∪ {wi}, and N(e2) = V(e2) ∪ {w2, w3}. Therefore,

N(ei) ∩ N(e j) = ∅ ∀i ∈ [2]. (17)

For i ∈ [2], let Pi be the subgraph induced by N(ei) ∪

N(ei+1 (mod 3)). From (17),

V(Pi) ∩ N(ei+2 (mod 3))

= (N(ei) ∪ N(ei+1 (mod 3)) ∩ N(ei+2 (mod 3))

= ∅ ∀i ∈ [2].

Since ei, ei+1 (mod 3) ∈ E(Pi), Pi is a path containing ei and

ei+1 (mod 3) that avoids the vertices in N(ei+2 (mod 3)).

Thus, (2) of Theorem 2 does not hold.

Case 3: G contains an induced subgraph S isomorphic to one

of graphs in Fig. 4.

Since G contains two induced cycles of length 6, (2) of Theo-

rem 2 does not holds.

Thus, we have the lemma.

Lemma 17 If (3) of Theorem 2 holds, then (1) also holds.

We will show Lemma 17 in Section 3.2. From Lemmas 15,

16, and 17, we have Theorem 2. As a corollary of Theorem 2,

we also have Theorem 1. In the proof of Lemma 17 in we show

the construction of ray representation of G along an edge-spine.

Since such an edge-spine can be found in polynomial time, we

can recognize whether G is 3DORG. Thus, we have Theorem 3.

Before proving Lemma 17, we need some preliminaries.

r

u

r

u

(a) (b)

Fig. 11 Example of red vertices.

u v

wz

u v

wz

(a) (b)

Fig. 12 Example of blue vertices.

3.1 Preliminaries of Lemma 17

For a graph S and a vertex u ∈ V(S ), if a vertex u is represented

by a red circle in a figure of S , the figure implies the graph ob-

tained from S and a rooted tree of height at most 1 by identifying

u and the root of the tree. Such a vertex is called a red vertex.

Fig. 11(a) is an example of a graph represented by Fig. 11(b).

A graph represented by Fig. 11(b) is called a diamond, and the

vertex r is the root of it.

For a graph S and a vertex u ∈ V(S ), if a vertex u is repre-

sented by a blue circle in a figure of S , the figure implies the

graph obtained from S , a number of diamonds, and a rooted trees

of height at most 2 by identifying u and the roots of those dia-

monds and trees. Such a vertex is called a blue vertex. Fig. 12(a)

is an example of a graph represented by Fig. 12(b).

Rays corresponding to vertices of a diamond shown in

Fig. 13(a) can be drawn in an L-shaped area and Ra as seen in

Fig. 13(b), where L-shaped area is represented by blue area in the

figure. Since a large L-shaped area can contain a number of small

L-shaped areas, we have the followning.

Proposition 3 A blue vertex rooted at r can be drawn in an

L-shaped are and Rr as seen in Fig. 13(c).

From Proposition 3, we also have that Fig. 12(b) can be repre-

sented by Fig. 14(a), that is, we have the following.

Proposition 4 A ray representation for Fig. 12(b) can be

drawn in an L-shaped area and two rays Ru and Rv as shown in

Fig. 14(b).

For a diamond with two blue vertices shown in Fig. 15(a), we

have the following.

Proposition 5 A ray representation for Fig. 15(a) can be

drawn in an L-shaped area and two rays Ru and Rw as shown in

Fig. 15(b).

3.2 Proof of Lemma 17

In this section, we show an example of a bipartite cactus and

construction of its ray representation.

From Lemmas 10, 11, 12, 13, 14, we can prove that a bipartite

cactus containing no graph in F1 can be decomposed into graphs

which form Fig. 12(b), Fig. 15(a), and a cycle of length 6 whose

depth sequence is (0, 1−, 2−, 0, 1−, 2−) or (0, 1−, 2−, 0, 2−, 1−).
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Fig. 13 Diamond and ray representation.
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Rw

Rv Rz
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(a) (b)

Fig. 14 Ray representation of a graph shown in Fig. 12(b).

u

v

w

z

Ru

Rw

Rv Rz

(a) (b)

Fig. 15 Diamond with 2 blue vertices and its ray representation.

w1
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w3 w4

w5 w6
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w9

(a)
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Rw3

Rw5

Rw4
Rw6

Rw8

Rw7

Rw9

(b)

Fig. 16 Example of a cactus and its ray representation

An example of such graph G is shown in Fig. 16(a), where

〈w1, w2, . . . , w9〉 is an edge-spine of G. Applying Propositions=4

and 5 along the edge-spine, we can obtain a ray representation

shown in Fig. 16(b).

Thus, we have the lemma.

4. Proof Sketch of Theorem 3

The following can be done in polynomial time.

• enumerate all cycles in a cactus.

• compute depth sequences of cycles in a cactus.

• compute whether a cactus contain 3-claw.

Therefore, we can compute whether a bipartite cactus contain a

graph in C2×4 ∪ F2 ∪ F3 as an induced subgraph.

Thus from Theorem 2, we have Theorem 3.
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