ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. データベース(TOD)[電子情報通信学会データ工学研究専門委員会共同編集]
  3. Vol.13
  4. No.2

Real-time Forecasting of Non-linear Competing Online Activities

https://ipsj.ixsq.nii.ac.jp/records/204372
https://ipsj.ixsq.nii.ac.jp/records/204372
3a0558bd-2428-491b-8c4e-f9bf77636ff6
名前 / ファイル ライセンス アクション
IPSJ-TOD1302005.pdf IPSJ-TOD1302005.pdf (2.5 MB)
Copyright (c) 2020 by the Information Processing Society of Japan
オープンアクセス
Item type Trans(1)
公開日 2020-04-16
タイトル
タイトル Real-time Forecasting of Non-linear Competing Online Activities
タイトル
言語 en
タイトル Real-time Forecasting of Non-linear Competing Online Activities
言語
言語 eng
キーワード
主題Scheme Other
主題 [研究論文] time-series, non-linear, real-time forecasting
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Kumamoto University, Graduate School of Science and Technology
著者所属
Osaka University, The Institute of Scientific and Industrial Research
著者所属
Osaka University, The Institute of Scientific and Industrial Research
著者所属(英)
en
Kumamoto University, Graduate School of Science and Technology
著者所属(英)
en
Osaka University, The Institute of Scientific and Industrial Research
著者所属(英)
en
Osaka University, The Institute of Scientific and Industrial Research
著者名 Thinh, Minh Do

× Thinh, Minh Do

Thinh, Minh Do

Search repository
Yasuko, Matsubara

× Yasuko, Matsubara

Yasuko, Matsubara

Search repository
Yasushi, Sakurai

× Yasushi, Sakurai

Yasushi, Sakurai

Search repository
著者名(英) Thinh, Minh Do

× Thinh, Minh Do

en Thinh, Minh Do

Search repository
Yasuko, Matsubara

× Yasuko, Matsubara

en Yasuko, Matsubara

Search repository
Yasushi, Sakurai

× Yasushi, Sakurai

en Yasushi, Sakurai

Search repository
論文抄録
内容記述タイプ Other
内容記述 Given a large, online stream of multiple co-evolving online activities, such as Google search queries, which consist of d keywords/activities for l locations of duration n, how can we analyze temporal patterns and relationships among all these activities? How do we go about capturing non-linear evolutions and forecasting long-term future patterns? For example, assume that we have the online search volume for multiple keywords, e.g., “HTML/Java/SQL/HTML5” or “Iphone/Samsung Galaxy/Nexus/HTC” for 236 countries/territories, from 2004 to 2015. Our goal is to capture important patterns and rules, to find the answer for the following issues: (a) Are there any periodical/seasonal activities? (b) How can we automatically and incrementally detect the sign of competition between two different keywords from the data streams? (c) Can we achieve a real-time snapshot of the stream and forecast long-range future dynamics in both global and local level? In this paper, we present RFCAST, a unifying adaptive non-linear method for forecasting future patterns of co-evolving data streams. Extensive experiments on real datasets show that RFCAST does indeed perform long-range forecasts and it surpasses other state-of-the-art forecasting tools in terms of accuracy and execution speed.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.28(2020) (online)
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Given a large, online stream of multiple co-evolving online activities, such as Google search queries, which consist of d keywords/activities for l locations of duration n, how can we analyze temporal patterns and relationships among all these activities? How do we go about capturing non-linear evolutions and forecasting long-term future patterns? For example, assume that we have the online search volume for multiple keywords, e.g., “HTML/Java/SQL/HTML5” or “Iphone/Samsung Galaxy/Nexus/HTC” for 236 countries/territories, from 2004 to 2015. Our goal is to capture important patterns and rules, to find the answer for the following issues: (a) Are there any periodical/seasonal activities? (b) How can we automatically and incrementally detect the sign of competition between two different keywords from the data streams? (c) Can we achieve a real-time snapshot of the stream and forecast long-range future dynamics in both global and local level? In this paper, we present RFCAST, a unifying adaptive non-linear method for forecasting future patterns of co-evolving data streams. Extensive experiments on real datasets show that RFCAST does indeed perform long-range forecasts and it surpasses other state-of-the-art forecasting tools in terms of accuracy and execution speed.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.28(2020) (online)
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11464847
書誌情報 情報処理学会論文誌データベース(TOD)

巻 13, 号 2, 発行日 2020-04-16
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7799
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 20:13:20.013139
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

Thinh, Minh Do, Yasuko, Matsubara, Yasushi, Sakurai, 2020: 情報処理学会.

Loading...

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3