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Abstract: Given a large, online stream of multiple co-evolving online activities, such as Google search queries,
which consist of d keywords/activities for l locations of duration n, how can we analyze temporal patterns and re-
lationships among all these activities? How do we go about capturing non-linear evolutions and forecasting long-
term future patterns? For example, assume that we have the online search volume for multiple keywords, e.g.,
“HTML/Java/SQL/HTML5” or “Iphone/Samsung Galaxy/Nexus/HTC” for 236 countries/territories, from 2004 to
2015. Our goal is to capture important patterns and rules, to find the answer for the following issues: (a) Are there any
periodical/seasonal activities? (b) How can we automatically and incrementally detect the sign of competition between
two different keywords from the data streams? (c) Can we achieve a real-time snapshot of the stream and forecast
long-range future dynamics in both global and local level? In this paper, we present RFCast, a unifying adaptive
non-linear method for forecasting future patterns of co-evolving data streams. Extensive experiments on real datasets
show that RFCast does indeed perform long-range forecasts and it surpasses other state-of-the-art forecasting tools in
terms of accuracy and execution speed.
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1. Introduction

The development of new technologies and online marketing
systems has significantly led to stiff competition between many
companies and brands. In terms of data mining, a massive vol-
ume and variety of time-stamped data of online user activity is
generated and collected at a very high logging rate. In the real
applications, there is a vital new opportunity for data scientists
and analysts to measure the collective behavior of online users, in
order to provide solutions to social, economic, and other impor-
tant problems.

Our goal is to find patterns, relationships and deltas in a large
collection of co-evolving online activities, consisting of tuples
of the form: (activity, location, time). In other words, as-
sume that we have a data stream X of d-dimensional data, e.g.,
“HTML/Java/SQL/HTML5”, for 236 countries/territories, how
can we find meaningful patterns and seasonal/annual activities?
Specifically, we would like to answer the following questions:
Is there any sign of competition, e.g., between “HTML” and
“HTML5” during the stream monitoring? Can we execute the
real-time forecasting of the future dynamics of online user activ-
ities in both global and local level?

In this paper, we present RFCast, a unifying adaptive non-
linear method for forecasting future patterns of co-evolving data
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streams. Intuitively, we wish to solve the following problem:

Informal problem. Given data stream X, which consists of
multi-dimensional online activities of d keywords in l locations
of duration n, i.e., X = {x(1), . . . , x(tc)}, where tc is the current
time tick, we want to
• find global and local-level interaction and competition (e.g.,
HTML vs. HTML5),
• find seasonal/annual patterns, and
• spot external events (deltas).

Most importantly, we want forecast ls-steps-ahead future event
x(tc + ls), instantly, at any point in time.

Contributions. In this paper, we present RFCast, an efficient
and effective non-linear method for forecasting future dynamics
of co-evolving data streams. Our method has the following desir-
able properties:
( 1 ) Effective: Our method can capture the meaningful proper-

ties in the co-evolving streams, such as the complex non-linear
patterns and the sign of competition between activities, and it
can also forecast long-term future dynamics.

( 2 ) Adaptive: Thanks to our modeling framework, our method
is fully automatic, requiring no manual tuning.

( 3 ) Scalable: The computation cost of RFCast does not depend
on data stream length.

( 4 ) Practical: RFCast provides a response instantly and gener-
ates long-range future events.

Outline. The rest of the paper is organized in the conventional
way. Next, we describe related work, followed by our proposed
model and algorithms, experiments, and conclusions.
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2. Related Work

Pattern Discovery and Forecasting in Time Series. In re-
cent years, there has been an explosion of interest in mining
time-stamped data, including pattern discovery and forecast-
ing [1], [2], [19], [21], [22], [25], [27], [28]. Several traditional
modeling and forecasting approaches typically use linear meth-
ods, such as autoregressive integrated moving average (ARIMA),
linear dynamical systems (LDS), TBATS [11], Kalman filters
(KF) and their variants [8], [9], [10], [26]. Existing non-linear
methods for forecasting tend to be hard to interpret and cannot
be used easily for long-term prediction, because they rely on a
nearest-neighbor search [3].

AutoPlait [13] is a fully-automatic mining algorithm for co-
evolving sequences based on HMMs; however, it cannot capture
long-range non-linear dynamics of co-evolving data streams. Re-
cently, [12] developed an adaptive non-linear dynamical system
with the aim of understanding the dynamics of IoT data streams
and social media and executing real-time forecasting.

Social Activity Analysis. Analysis of social media and online
user behavior has attracted considerable interest. Through online
social media, Matsubara et al. [17] explored the rise and fall pat-
terns of data sequences that describes the information diffusion
process. Prakash et al. [23] described the setting of two com-
peting products/ideas spreading over a network, and provided a
theoretical analysis of the propagation model for arbitrary graph
topology. FUNNEL [18] is a novel non-linear method of min-
ing spatially coevolving epidemic sequences using tensor analy-
sis technique, while EcoWeb [14] has been one of the first meth-
ods that effectively discover patterns and do forecasting future
dynamics of user online activities based on the idea of biological
ecosystem. For online activity analysis, Gruhl et al. [7] provides
a novel method of measuring the sales ranks on Amazon.com
through online blogs. The work reported in Refs. [4], [6], [24]
studied keyword volume, to predict consumer behavior. Be-
sides, Ref. [15] also developed a compact and powerful represen-
tation of competition between time-evolving activities. Recently,
Ref. [5] provided an automatic non-linear method to summarize
and forecast co-evolving online activities.

Contrast to the Competitors. Table 1 illustrates the relative
advantages of our method. Only our RFCastmatches all require-
ments, while
• The traditional AR, ARIMA and related forecasting methods
including AWSOM [20], PLiF [10] and TriMine [16] are fun-

Table 1 Capabilities of approaches. Our approach meets all specifications.
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Stream mining
√ √ √

Outliers
√ √ √ √ √

Competition
√ √ √

Seasonality
√ √ √ √ √ √

Local analysis
√ √ √ √

Parameter-free
√ √ √ √ √ √ √

Forecasting
√ √ √ √ √ √ √

damentally unsuitable for our setting, because they are based
on linear equations, while we employ non-linear equations.
Moreover, most of them require parameter tuning.
• AutoPlait [13], EcoWeb [14] and CompCube [15] are com-
fortable non-linear models for time-series mining. However,
they are not designed to capture long-range non-linear evolu-
tions of co-evolving data streams. Especially, AutoPlait is in-
capable of forecasting.
• RegimeCast [12] provides a good summary of time-series
evolution in streams, but cannot capture seasonal spikes, deltas
and location specific activities.

3. Proposed Model

In this section, we describe the idea and structure of the pro-
posed model.

Real-time Forecasting over Data Streams. Given a data stream
X, which consists of entries of d-dimensional data, i.e., x(1), x(2),
. . . , x(tc), where x(tc) is the most recent event, and tc increases
with every new time-tick. In order to execute real-time forecast-
ing over the given data stream, it is necessary to build an algo-
rithm that reports the upcoming future events, instantly, at any
point in time, while ignoring the redundant information. There-
fore, we came to a solution of ls-steps-ahead forecasting.

ls-steps-ahead Forecasting. Why should we employ “ls-steps-
ahead” for real-time forecasting? Given a large collection of
event sequences, we want to instantly and efficiently forecast fu-
ture events (e.g., to predict the search volume for a specified prod-
uct in the next few weeks, or detect the sign of competition be-
tween two brands). Therefore, our forecasting algorithm should
be able to generate months-ahead prediction, at every point in
time. It should also estimate future events, smoothly and con-
tinuously, by monitoring current trends and dynamic evolving
patterns. We understand that short-term prediction is meaning-
less while facing with real-time problems. By doing the ls-steps-
ahead forecasting, we can provide an effective long-term solu-
tion for various proposals (economics, marketing). Furthermore,
continuous processing is a requirement for data stream monitor-
ing. Since the traditional time-series forecasting approaches (e.g.,
ARIMA) are static and linear, we want to build an ideal method

Table 2 Symbols and definitions.

Symbol Definition
d Number of keywords/queries
l Number of locations/countries
n Duration of sequences
X d co-evolving event stream (X ∈ N

d×l×n)
x(t) d-dimensional event at time tick t, i.e., x(t) = {xi(t)}di=1

BG Base global matrix (d × 3)
BL Base local matrix (d × l)
CG Competition global matrix (d × d)
CL Competition local matrix (d × l)
SG Seasonality global matrix (d × np)
SL Seasonality local matrix (d × l)
D Delta tensor
XC Current window, i.e., XC = X[tm : tc]
VE Estimated window, i.e., VE = V [tm : te]
VF Forecast window, i.e., VF = V [ts : te]
v(t) d-dimensional estimated event at time tick t, i.e., v(t) =

{vi(t)}di=1

F Complete parameter set of RFCast
i.e., F = {BG,BL,CG,CL,SG,SL,D}
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Fig. 1 Illustration of RFCast. Given a tensor X ∈ N
d×l×n, it extracts impor-

tant patterns with respect to the following aspects: base properties of
global and local trends (BG, BL), competition (CG, CL), seasonality
(SG, SL), and deltas D.

that instantly reports future events by continuously capturing and
updating the current dynamic evolving patterns.

3.1 Intuition behind our Method
Assume that we receive a large event stream X, which con-

tains complex non-linear patterns, we then have a collection of
sequences with d unique queries/keywords, l locations/countries
with duration n. We can treat this set as a 3rd-order tensor, i.e.,
X ∈ N

d×l×n, where the element xim(t) of X corresponds to the vol-
ume of the i-th keyword in the m-th country at time-tick t. Fig-
ure 1 shows the illustration of our modeling framework. Given a
tensor X, it extracts important patterns of four aspects, base prop-
erties of global and local trends (BG, BL), competition (CG, CL),
seasonality (SG, SL), and deltas D.
• Basic Trends: The basic trends describe the non-linear
evolution of individual activity, including potential popularity
and growth rate. We assume that the popularity size of each
keyword/activity dynamically evolves over time, and it corre-
sponds to the aggregated volume of each user who pays atten-
tion and searches for the keyword in each country. For ex-
ample, if a new technology (say, HTML5) is attractive, many
users would spend more time studying it, or recommend it to
their friends, and eventually this would lead to an exponential
growth in popularity size.
• Competition: We assume that there is latent competition be-
tween different activities. For example, most users choose one
of the products (smartphones), (e.g., iPhone, Samsung Galaxy,
Blackberry, Nexus), based on the features and price of the
products, or their own favors. Furthermore, it is highly im-
portant for us to capture location-specific trends and patterns.
For example, each country has its own trends and user activi-
ties. These activities evolve naturally over time and depend on
many factors including society, routine and economy.

Model 1 (RFCast-base) Let Pim(t) be the potential popu-
larity size of activity i in the m-th country at time tick t. Our
base model is can be described as the following equations:

Pim(t) = Pim(t − 1)

⎡⎢⎢⎢⎢⎢⎣1 + rim

⎛⎜⎜⎜⎜⎜⎝1 −
∑d

j=1 ci jm × Pjm(t − 1)

Kim

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ ,

(i = 1, . . . , d; m = 1, . . . , l; t = 1, . . . , n)

Model 1 consists of the following parameters:
– pim: popularity size of activity i in m-th location at time

tick t = 0 (Pim(0) = pim).
– rim: growth rate of activity i in m-th location (rim > 0).
– Kim: available user resources of activity i in m-th location
(Kim > 0).
– ci jm: competition coefficient of j-th activity on i-th activity
in m-th location (ciim = 1, ci jm ≥ 0).

We assume that competing activities share some of the same
finite user resources, and users cannot use their time/money for
multiple purposes simultaneously. At time tick t, the percent-
age of users that might be interested in activity i in the m-th

country can be described as
(
1 −

∑d
j=1 ci jm×P jm(t−1)

Kim

)
, where ci jm is

the competition coefficient that describes the effect rate of ac-
tivity j on activity i in the m-th country. If ci jm = 0 (i � j), there
is no interaction between activities i and j in the m-th country,
(i.e., “neutralism”). In contrast, if ci jm = c jim = 1, these two
activities compete with each other in the m-th location, by shar-
ing exactly the same user resource.
• Seasonality: Seasonality describes yearly, cyclic, tempo-
ral user activities (e.g., Black Friday). We assume that each
keyword (e.g., iPhone, Samsung Galaxy) always has a certain
volume of popularity, however, user behavior changes dynam-
ically according to the season, various annual events and cus-
toms (e.g., the number of sold smartphones significantly rises
during Black Friday or sales seasons). We use the new param-
eter namely, sim(t), to describe the seasonal pattern.
• Deltas: We define deltas as extreme spikes, which represent
major events, and are completely independent of long-range
evolution and seasonality. They represent unrepeated, external
events and anomalies, such as the official release of the first
generation iPhone in 2007. To reflect these phenomena, we
introduce an additional parameter, namely, δim(t): deltas.
Model 2 (RFCast-full) Let vim(t) be the estimated volume of

activity i in the m-th country at time tick t. Our full model is de-
scribed as the following equations:

vim(t) = Pim(t)
[
1 + sim

(
t mod np

)]
,

(i = 1, . . . , d; m = 1, . . . , l; t = 1, . . . , n)

where, np stands for the period of the cycle (i.e., np = 52 weeks).
The estimated volume vim(t) depends on the latent popularity

size Pim(t) and the seasonal/annual trends sim(t mod np), i.e., rel-
ative value of popularity size Pim(t) vs. the actual volume vim(t).
Note that if there is no seasonality for activity i in the m-th coun-
try at time t, (i.e., sim(t mod np) = 0), the estimated volume is
equal to the popularity size (i.e., vim(t) = Pim(t)). Here, δim(t) de-
scribes non-cyclic, completely independent activity of the long-
range evolution. We want to capture the deltas from the event
stream X to ignore it from our forecasting result, since they do
not link to the dynamical evolution of the data streams.

For the next step, we are also interested in capturing the above
patterns from the following perspectives,
• Global: i.e., world-wide level: general trends and patterns.
• Local: i.e., country level: area-specific trends and local sen-
sitivities.
Our complete model consists of the following:
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Definition 1 (Complete set of RFCast) Let F be a complete
parameter set (F = {BG,BL,CG,CL,SG, SL,D}) that describe the
global/local patterns of the sequences in X, i.e.,
• BG (d × 3): global-level basic patterns of each activity, in-
cluding initial popularity size, growth rate, carrying capacity).
• BL (d × 3 × l): local-level basic patterns for l countries.
• CG (d × d): global-level competition between d keywords.
• CL (d × d × l): local-level competition for l countries.
• SG (k × np), 1 ≤ k ≤ d: SG consists of k components of
period np, each component refers to an individual seasonal pat-
tern, such as Black Friday or year-end vacation.
• SL (d × k × l): local-level seasonal patterns for l countries.
• D (d × n × l): a tensor of deltas.

4. Algorithm

4.1 Overview
Firstly, we define several key concepts in this paper.
Definition 2 (Event stream X) Let X be a data stream that

consists of event entries of d keywords, for l countries, i.e.,
X = {x(1), . . . , x(tc)}, where tc is the current time tick. We re-
fer to X as an event stream.

Assume that we receive a new event x(tc), continuously, and
tc increases with every new time tick. It would be convenient to
treat the most recently arrived events, as a current window.

Definition 3 (Current window XC) Let XC = X[tm : tc] be
the subsequence of length lc, starting from time tick tm and end-
ing at tc (1 ≤ tm ≤ tc).

Given the current window XC , our next step is to find the op-
timal parameter in F, and predict ls-steps-ahead future activities:
VF = {v(ts), . . . , v(te)} using Model 2

Definition 4 (ls-steps-ahead foreacast window: VF) Let
VF = V [ts : te] denote the ls-steps-ahead future events starting
from time-tick ts and ending at te (tc ≤ ts ≤ te), where, ts = tc+ ls,
te = ts + lp, and lp is the length of the reporting window.

Figure 2 shows a snapshot of RFCast at the current time tick
tc. Here, the black dotted lines show the original event stream
X. The blue colored line show our estimated event VE from time
tick tm to te. Note that the subsequence from tc to te is future (un-
known) events, and we need to estimate these hidden dynamical
patterns, incrementally and continuously.

Consequently, given an event stream X, our goal is to capture

Fig. 2 Snapshot of our streaming algorithm: Given a data stream X (black
dotted lines), our algorithm estimates the current time-series pattern
VE = V [tm : te] (blue bold lines), and reports ls- steps-ahead future
events VF (in a red box),incrementally and continuously. Here, XC =

X[tm : tc] is a current window (i.e., recently arrived events) and VF =

V [ts : te] is a ls-steps-ahead future (i.e., unknown) event set.

the current time-evolving patterns in XC , as a complex, non-linear
dynamical system, and predict the ls-steps-ahead forecast win-
dow VF , at any point in time.

Here, we introduce our forecasting algorithm, which consists
of the following algorithms:
• RFCast-Reader: Generates the estimated events VE = V
[tm : te], when we are given the current window XC and the
model parameters F.
• RFCast-Estimator: Complete the requirement of updating
the parameter set F for XC , when the current time-tick tc marks
a new period (a new year).
• RFCast: Reports the optimal ls-steps-ahead future events
i.e., forecast window VF . It also maintains the full model pa-
rameter set F.
Figure 3 illustrates how the our algorithm works. Given an

event stream X = {x(1), . . . , x(tc)}, where tc is the current time
tick, our algorithm incrementally extracts the current window XC ,
estimates the current dynamical pattern VE , and instantly reports
ls-steps-ahead future events VF . It also maintains the time-series
model database, and updates model parameters in F, if required.
Next, we describe each of our algorithms in full details.

4.2 RFCast - Reader
Assume that we are given the current window XC and the cur-

rent parameter set F = {BG,BL,CG,CL, SL,SL,D}. We first es-
timate the dynamical event sequence VE = V[tm : te], as shown
in Fig. 3. Next, the question is how can we estimate events VE ,
given the current set F? The most straightforward solution would
be simply to use the fixed parameters in F and calculate v(tm),
v(tm + 1), . . . , using Model 2. We try to avoid that approach
because the latent trends of the current window XC in the event
streams would dynamically and continuously evolve over time.
Therefore, it is necessary for us to describe the characteristics of
the current window XC by identifing the optimized parameters
in F. More importantly, in order to describe the current activi-
ties in XC , the algorithm needs to adaptively update the parame-
ters continuously. Algorithm 1 shows the overall process of de-
tecting the complex non-linear patternin the current window XC ,
namely, RFCast-Reader. Firstly, for each i-th activity, the algo-

Fig. 3 Overview of our algorithm: Given an event stream X, it extracts the
current window XC , and then searches for the optimal parameters
in the time-series model database, and generates the ls-steps-ahead
events VF . If there is a new detected competition in XC , it also up-
date the new parameter set, and inserts it into the database.
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Algorithm 1 RFCast-Reader(XC ,F)
1: Input: current window XC (d × l × lc) and current parameter set F, i.e.,

F = {BG,BL,CG,CL,SG,SL,D}
2: Output: Estimated event VE = V[tm : te], update F
3: for i = 1 : d do
4: VC i = arg min

V′C i

||XC i − V′C i ||; // V′C i = fC (Fi);

5: Fi = arg min
F′ i

||XC i − VC i ||;
6: end for
7: VE = fE (F); // Calculate estimated event VE

8: return {VE ,F};

rithm tries to optimize the parameters in F, so that it minimizes
the mean square errors between the original events and the esti-
mated events, i.e., min ||XC − VC ||. Here, let fC(F) be a function
that generates estimated events VC = {v(tm), . . . , v(tc)} in Model
2, given the parameter set F. After being given a set of optimized
event sequences VC , the algorithm computes the potential popu-
larity size, and then the estimated volume of activities vC . Finally,
it computes the estimated event VE = fE(F) as the optimal events
for the current window XC .

4.3 RFCast - Estimator
Next, let us tackle the next question, namely, what if there is

a change in dynamical pattern of the sequences in XC , for ex-
ample, the sign of competition between activities, the change of
seasonal pattern, the existence of deltas? In that case, we want
to estimate the new parameter set f that describes the dynami-
cal patterns in XC , and update it to the full parameter set F (see
Fig. 3). Since F consists of a large number of parameters, it is ex-
tremely expensive to optimize all the parameters simultaneously,
at every time-tick. We thus propose an efficient and effective al-
gorithm, namely, RFCast-Estimator, which estimates for the op-
timal parameters in terms of both global and local levels, only if
the current time-tick tc marks a new period. In other words, we
run RFCast-Estimator after every 52 time-ticks.
4.3.1 Model Description and Data Compression

Our goal is to efficiently and automatically estimate the full pa-
rameter set given X. We introduce a new coding scheme, which
is based on the Minimum Description Length (MDL) principle.
Here, it follows the assumption that the more we can compress
the data, the more we can detect its underlying patterns.

Model Description Cost. Firstly, we estimate the description
complexity of a model parameter set, CostM(F). It consists of the
following terms:
• The number of activities d, countries l, and time-ticks n re-
quire log∗(d) + log∗(l) + log∗(n) bits *1.
• Basic trends: CostM(BG) = d · cF , CostM(BL) = |BL| ·
(log(d) + log(3) + log(m) + cF) + log∗(|BL)|) *2

• Competition: CostM(CG) = |CG| · (log(d) + log(d) + cF) +
log∗(|CG|), CostM(CL) = |CL| · (log(d)+ log(d)+ log(l)+ cF)+
log∗(|CL|)
• Seasonality: CostM(SG) = |SG| · (log(k) + log(np) + cF) +
log∗(|SG|+log∗(k)), CostM(SL) = |SL| ·(log(d)+log(k)+log(l)+
cF) + log∗(|SL|)

*1 Here, log∗ is the universal code length for integers.
*2 | · | describes the number of non-zero elements, cF is the floating point

cost which is up to 4 × 8 bits.

• Deltas: CostM(D) = |D| · (log(d) + log(n) + log(l) + cF) +
log∗(|D|)

Data Coding Cost. The coding cost of X given the
full parameter set F is computed by: CostC(X|F) =∑d,l,n

i,m,t=1 log2 p−1
Gauss(μ,σ2)

(xim(t) − vim(t)), where xim(t) and
vim(t) are the original and estimated volume of the i-th activity
in the m-th country at time-tick t, μ and σ2 are the mean and
variance of the distance between the original and estimated
values.

Total Code Length. The total code length for X can be described
as: CostT (X; F) = CostM(F) + CostC(X|F). Our goal here is to
find an optimal parameter set F to minimize this function.
4.3.2 Global Parameters Estimation

Given a tensor X, our sub-goal is to find the optimal global-
level parameter set. Let X be the average volume of d activities
for all l locations of length n, that is, X = {x̄i}di=1, where x̄i =

{ 1
m

∑m
l=1 xil(t)}nt=1. For the next step, we iteratively optimize each

parameter set for each i-th activity.
Specifically, let Fi be a set of global parameters for activity i,

(i.e., Fi = {BGi,CGi, SGi,Di}) *3. Here, we initially set ci j = 0
(i � j), which means there are no competitions between the d

activities). The algorithm then separately and independently es-
timate parameters Fi for each individual sequence x̄i (i = 1, . . . ,
d). In the case that competition between activities exists; for ex-
ample, there is competition between two activities: x̄i and x̄ j. For
each iteration, the algorithm searches for the best competitor x̄ j

of x̄i, while minimizing the total cost function. Note that, this
procedure continues until convergence.

One of the most important points here is that, we discover the
deltas in D not for fitting the estimated events, but to distinguish
it from the periodical spikes detected as seasonal patterns. How-
ever, during the stream monitoring, if the new detected deltas
forms a seasonal pattern with the old ones, they will be consid-
ered the seasonal pattern and fit to the estimated result.

There are two main ideas behind the global parameter estima-
tion algorithm: (1) TetraFit and (2) SubsetCollection.

TetraFit. The objective here is to purify parameters for BG,CG,
as well as filter out seasonality SG and deltas D. However, we
cannot optimize all the parameters simultaneously, as each com-
ponent consists of several parameters, which makes the optimiza-
tion too expensive. To deal with this problem, we propose an
alternating method to optimize each parameter set of each i-th
activity (i.e., BGi,CGi,SGi,Di). Algorithm 3 shows the steps per-
formed by TetraFit in detail. TetraFit iteratively estimates each
parameter set that corresponds to the i-th activity, given a set of
sequences X, a current parameter set F, and, index i. We also use
the Levenberg-Marquardt (LM) algorithm and minimize the cost
function. Note that, we ignore unrelated combinations/pairs (i, j)
to reduce the computation cost.

SubsetCollection. We use a subset X[i] ⊂ X that competes with
activity i to estimate the model parameters with respect to activ-
ity i for each iteration of TetraFit. It consists of sequences that
compete directly (or indirectly) with the i-th sequence x̄i, that is,

*3 BG i = {pi, ri,Ki},CG i = {ci j}dj=1,SG i = {si(t)}np

t=1,Di = {δi(t)}nt=1. Ini-
tially, pi = ri = Ki = 1, k = 0.
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Algorithm 2 RFCast-Estimator(XC)
1: Input: current window XC (d × l × lc)
2: Output: full parameters, i.e., F = {BG,BL,CG,CL,SG,SL,D};
3: /* (I) Global estimation */
4: Compute average volumes XC (d × lc), i.e., XC = {x̄C i}di=1
5: Initialize parameter set F
6: for i = 1 : d do
7: Fi = TetraFit (i, x̄C i, F)
8: end for
9: /* Estimate competition among all d activities */

10: while improving the parameters do
11: /* Select the most unfitted sequence x̄C i */
12: i = arg max

1≤i′≤d
CostT (x̄C i′ ; F);

13: /* Estimate parameter set F′ i j for each activity xC j */
14: for j = 1 : d do
15: /* Find subset of sequences that have competition with i, j*/
16: XC [i, j] = SubsetCollection({x̄C i, x̄C j},CG);
17: F′ i j =TetraFit (i,X[i, j],F);
18: end for
19: /* Find the best competitor xC j of xC i, and update Fi */
20: j = arg min

1≤ j′≤d
CostT (XC ; F′ i j′ );

21: Fi = F′ i j

22: end while
23: /* (II) Local estimation */
24: /* For each i-th activity in l-th location, xC il */
25: for l = 1 : m do
26: for i = 1 : d do
27: XC [il] = SubsetCollection(xC il,F);
28: BL,CL,SL,Dil =TetraFit (i,XC [il], {BG,CG});
29: end for
30: end for
31: return F = {BG,BL,CG,CL,SG,SL,D};

Algorithm 3 TetraFit(i,XC ,F)
1: Input: index i, sequence XC , current parameter set F
2: Output: optimal parameters for i, i.e., Fi = {BG i,CG i,SG i,Di}
3: while improving the parameters do
4: /* (I) Base and competition parameter fitting, i.e., BG,CG */
5: {BG i,CG i} = arg min

BG
′
i ,CG

′
i

CostT (XC ; BG,CG,SG,D);

6: /* (II) Seasonal parameter fitting, i.e., SG */
7: {SG i} = arg min

SG
′
i

CostT (XC ; BG,CG,SG,D);

8: /* (III) Find new deltas, i.e., D */
9: {Di} = arg min

D′i
CostT (XC ; BG,CG,SG,D);

10: end while
11: return Fi = {BG i,CG i,SG i,Di} ;

X = f (x̄i), where, f (x̄i) = {x̄i ∪ x̄ j ∪ f (x̄ j)|∀ jci j > 0}. If there is
no competition (i.e., ∀ jci j = 0(i � j)), then, X[i] = x̄i. With this
approach, we can superbly reduce the computation time needed
for each iteration in TetraFit, because the subset X[i] consists of
only a small number of sequences.
4.3.3 Local Parameters Estimation

In this research, we also consider the issue of execute real-time
forecasting for local-level events. The problem here is that, some
of the countries have very sparse sequences, or contain different
dynamical evolutions from the global pattern. To deal with this
issue, we share the global competition for all l countries. Our
algorithm ignores unrelated pairs of activities, and updates the
coefficients only if ci j > 0. The reason is that, if there is no lo-
cal competition between two activities i and j for all l countries,
there is no global competition between them. For each activity i in
each country m, it finds an optimal parameter set Fim, using both
use SubsetCollection and TetraFit. Note that it uses global pa-
rameters BG and CG as the initial parameter set of TetraFit (see
Algorithm 2).

Algorithm 4 RFCast (x(tc))
1: Input: a new event x(tc) at time-tick tc
2: Output: ls-steps-ahead future events VF

3: /* (I) Parameter fitting for activities */
4: {VE ,F} = RFCast-Reader(XC ,F);
5: /* (II) Update parameter (if required) */
6: if tc mod np = 0 then
7: f = RFCast-Estimator(XC );
8: F = {F ∪ f};
9: end if

10: /* (III) ls-steps-ahead future event generation */
11: VF = V[ts : te];
12: return VF

4.4 RFCast
Our final goal is to capture the complex dynamical patterns

F, and predict ls-steps-ahead forecast window VF . The detailed
RFCast algorithm is shown in Algorithm 4. Given a new event
x(tc), it extracts the current window XC , estimates event sequence
VE . When the current time tick tc marks a new period (every
52 time-ticks), it launches RFCast-Estimator to estimate the sea-
sonal patterns, detects new deltas and update the parameter set F.
Finally, it reports ls-steps-ahead forecast window VF .

5. Experiments

In this section, we demonstrate the effectiveness of RFCast
with real datasets. The experiments were designed to answer the
following questions:
Q1 Effectiveness: Can our method succeed in modeling and

forecasting long-term dynamics in given input streams?
Q2 Accuracy: How well does our method forecast future values?
Q3 Scalability: How does our method scale in terms of compu-

tational time?
We conducted our experiments on an Intel Core i7-3770K

3.50 GHz with 32 GB of memory, running Linux.

Dataset Description. We performed experiments on the Google-

Trends dataset. This dataset consists of the volume of searches for
queries (i.e., keywords) in various topics (i.e., products, events,
services, etc..) on Google *4 from January 2004 to January 2015,
collected in 236 countries. Each query represents the search vol-
umes that are related to keywords over time (in weekly basis).

5.1 Effectiveness
We demonstrate the forecasting power of RFCast in terms of

capturing important patterns of event streams. We performed ex-
periments on sequence sets of keywords/activities from four dif-
ferent domains on GoogleTrends. We picked up and performed
our real-time forecasts on the top six major keywords for each
domain, for l = 236 countries/territories, from January 2004 to
January 2015. For each event stream, our proposed model con-
tinuously generates twelve-weeks-ahead (roughly three months)
predictions, every time tick. Note that the dataset is scaled so that
each sequence has a peak volume of 1.0.

#1. Development tools. Figure 4 (a) shows our discoveries on
six keywords (i.e., 1: HTML, 2: Java, 3: SQL, 4: Visual Ba-
sic, 5: ASP.NET, 6: HTML5). HTML, Java, SQL, Visual Ba-
sic and ASP.NET has been popular tools for developers so far.

*4 http://www.google.com/insights/search/
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Fig. 4 RFCast successfully forecasts three-months-ahead future events of online user activities: Each
event sequence consists of the Google search volume for six keywords (from 2004 to 2015), i.e.,
(a) Development tools (1: HTML, 2: Java, 3: SQL, 4: Visual Basic, 5: ASP.NET, 6: HTML5), (b)
Smartphones (1: Iphone, 2: Samsung Galaxy, 3: Nexus, 4: HTC, 5: Blackberry, 6: Nokia), (c) Car
brands (1: Tesla, 2: Bugatti, 3: Ford, 4: Toyota, 5: Subaru, 6: Mazda), (d) Beer brands (1: Bud
Light, 2: Corona, 3: Keystone, 4: Miller, 5: Coors, 6: Modelo). Given the online user activities
(top), it incrementally forecasts events, at every reporting window = 1 week (bottom).

However, as soon as HTML5 (shown as the black line) became
a topic of mainstream media attention around April 2010, the
search volume for HTML5 has been rising rapidly, and RFCast
successfully captures the long-range evolution and exponential
rising patterns of this keyword. Furthermore, RFCast also cap-
tures the competitive evolution of all co-evolving keywords, i.e.,
the search volume of other five tools falls down because of the
rising interest in the new comfortable tool, HTML5. We can con-
clude that HTML5 has been drawing developers’ attention away
from the other development tools. Most importantly, RFCast can
automatically identify the sign of competition, as well as capture
the non-linear dynamics of the sequences, also forecast the up-
coming events, adaptively and instantly.

#2. Smartphones. Figure 4 (b) shows our forecasting result for
smartphones, which contains six keywords (i.e., 1: Iphone, 2:
Samsung Galaxy, 3: Nexus, 4: HTC, 5: Blackberry, 6: Nokia).
Since the 90s, Nokia had become the best-selling mobile phone
brand. However, with the existence of mobile phones with touch
screen, the balance had changed. Many manufacturers started

developing their smartphones with many features that dominated
Nokia phones; especially, the release of iPhone in 2007 marked
the rapid development of smartphones. Although Nokia also de-
veloped their own smartphones, their shares of the market started
to drop dramatically. Our proposed method, RFCast successfully
captures the long-range dynamics of the co-evolving keywords
relating to the big smartphones brands. And it completes this
task automatically and effectively.

#3. Car brands. Figure 4 (c) shows our result for the group of
car brands (i.e., 1: Tesla, 2: Bugatti, 3: Ford, 4: Toyota, 5: Sub-
aru, 6: Mazda). Ford, Toyota, Subaru, Mazda has been four of
the huge car brands in the world so far. Their products spread
widely all over the world with various types of car. Recently,
Bugatti and Tesla has caught the consumers’ sight as the new
luxury car brand. Especially, Tesla is one of the leading com-
pany in producing electric automobiles (AI driver). Since the car
market has been speedily growing, the whole six brands’ search
volume keeps rising over years. RFCast, in this case, does not
detect any sign of competition between the car brands, i.e., there
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Fig. 5 Forecasting error (RMSE) for each time tick (left) and the average (right). A lower value indi-
cates a better forecasting accuracy. RFCast consistently outperforms the state-of-the-art methods
such as RegimeCast, Δ-Spot and ARIMA with respect to accuracy between real values and the
three-months-ahead forecasted results.

Fig. 6 Wall clock time vs. Sequence length tc (left) and average (right): RFCast consistently wins. It
is up to 2 times faster than RegimeCast, 16 times faster than Δ-Spot, and 20 times faster than
ARIMA.

is neutral interaction between the activities. On the other side,
RFCast still does a good job capturing non-linear dynamics of
all the co-evolving sequences, including the exponential growth
and the seasonal patterns. Moreover, our forecasted results are
very close to the real event streams.

#4. Beer brands. Figure 4 (d) shows the result for the top six beer
brands: (i.e., 1: Bud Light, 2: Corona, 3: Keystone, 4: Miller, 5:
Coors, 6: Modelo), which successfully captures the long-term
non-linear dynamical evolution of the beer industry. There is sig-
nificant growth of all the keywords with one exception, Modelo
(shown as the light green line). Our proposed model success-
fully identifies the sign of competition between Modelo and other
beer brands, which makes Modelo’s search volume drops since
2011, where the strongest competitor of Modelo is recognized as
Corona. We also execute local streaming of the competition be-
tween these two beer brands for the area specification discovery.
Figure 7 shows our results that describe the different dynamical
patterns of the competition between two beer brands, Corona and
Modelo, in several countries in the world (i.e., AR-Argentina,
BR-Brazil, CA-Canada, CL- Chile, CO-Colombia, FR-France,

Fig. 7 RFCast captures local-level competition between Modelo and
Corona, as well as long-range evolution in each country.

MX-Mexico, PE-Peru). Since we do not use the straightforward
approach of applying the global parameter set for all l countries,
we can discover various types of dynamical evolution of these two
keywords. The variety of competitive situation in those countries
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show that Corona and Modelo play different marketing strategies
in different countries. Also, in terms of the flavor, the Modelo
class has a little more body and heavier finish than the Corona
class, thus it depends on the different tasting flavors between
countries.

5.2 Accuracy
Next, we discuss the quality of RFCast in terms of forecasting

accuracy. We compared our method with the following meth-
ods: (a) ARIMA, where we determined the optimal parameter set
using AIC, (b) Δ-Spot, a unifying non-linear method for online
activity analysis and (c) RegimeCast, which is a state-of-the-art
forecasting algorithm for complex time series.

Figure 5 shows the forecasting power of RFCast for the four
domains of GoogleTrends dataset. Specifically, it shows the root
mean square error (RMSE) between the original and the three-
months-ahead forecasted events (lower is better), where the left
figure shows the RMSE for each time tick, and the right figure
shows the average errors. A lower value indicates a better fore-
casting accuracy. Compared to our forecasted result, all the com-
petitors demonstrate higher RMSE; especially, ARIMA is a lin-
ear model, thus cannot capture complex, non-linear dynamics and
competition signs.

5.3 Scalability
We also evaluate the efficiency of our forecasting algorithm. In

Fig. 6 compares RFCast with RegimeCast, Δ-Spot and ARIMA
in terms of computation time for varying sequence lengths tc.
Here the figures are shown in linear-log scales. Since RegimeCast
and ARIMA are unable to analyze local-level streams, we only
examine the executing speed of all methods for global-level
streams. According to the result of four groups of activities,
RFCast generates long-range future events, significantly faster
than the competitors for the large streams, as we expected. Es-
pecially, in the left column of Fig. 6, each spike corresponds to
RFCast-Estimator process, which updates the parameter set F,
estimates the seasonal pattern and detects new sign of compe-
tition between activities. The right column of Fig. 6 shows the
average computation time of entire event streams. Here, our pro-
posed model shows lower average computation time compared
to a state-of-the-art model for event stream mining, RegimeCast,
also outperforms two other competitive methods, Δ-Spot and
ARIMA in terms of executing time.

6. Conclusions

In this paper, we presented RFCast, an efficient and effec-
tive method that focused on the problem of real-time forecasting
over co-evolving online activity streams. Our proposed method,
RFCast demonstrates all the following desirable properties:
( 1 ) It is Effective: RFCast detects non-linear patterns in the co-

evolving streams and forecasts long-term future dynamics.
( 2 ) It is Adaptive: it requires no training set and no domain ex-

pertise, thanks to our coding scheme.
( 3 ) It is Scalable: the computation time of RFCast does not de-

pend on data stream length.
( 4 ) It is Practical: RFCast provides a response at any time and

generates long-range future events.
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