WEKO3
アイテム
Real-time Forecasting of Non-linear Competing Online Activities
https://ipsj.ixsq.nii.ac.jp/records/204372
https://ipsj.ixsq.nii.ac.jp/records/2043723a0558bd-2428-491b-8c4e-f9bf77636ff6
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2020 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | Trans(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2020-04-16 | |||||||||||
タイトル | ||||||||||||
タイトル | Real-time Forecasting of Non-linear Competing Online Activities | |||||||||||
タイトル | ||||||||||||
言語 | en | |||||||||||
タイトル | Real-time Forecasting of Non-linear Competing Online Activities | |||||||||||
言語 | ||||||||||||
言語 | eng | |||||||||||
キーワード | ||||||||||||
主題Scheme | Other | |||||||||||
主題 | [研究論文] time-series, non-linear, real-time forecasting | |||||||||||
資源タイプ | ||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||
資源タイプ | journal article | |||||||||||
著者所属 | ||||||||||||
Kumamoto University, Graduate School of Science and Technology | ||||||||||||
著者所属 | ||||||||||||
Osaka University, The Institute of Scientific and Industrial Research | ||||||||||||
著者所属 | ||||||||||||
Osaka University, The Institute of Scientific and Industrial Research | ||||||||||||
著者所属(英) | ||||||||||||
en | ||||||||||||
Kumamoto University, Graduate School of Science and Technology | ||||||||||||
著者所属(英) | ||||||||||||
en | ||||||||||||
Osaka University, The Institute of Scientific and Industrial Research | ||||||||||||
著者所属(英) | ||||||||||||
en | ||||||||||||
Osaka University, The Institute of Scientific and Industrial Research | ||||||||||||
著者名 |
Thinh, Minh Do
× Thinh, Minh Do
× Yasuko, Matsubara
× Yasushi, Sakurai
|
|||||||||||
著者名(英) |
Thinh, Minh Do
× Thinh, Minh Do
× Yasuko, Matsubara
× Yasushi, Sakurai
|
|||||||||||
論文抄録 | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | Given a large, online stream of multiple co-evolving online activities, such as Google search queries, which consist of d keywords/activities for l locations of duration n, how can we analyze temporal patterns and relationships among all these activities? How do we go about capturing non-linear evolutions and forecasting long-term future patterns? For example, assume that we have the online search volume for multiple keywords, e.g., “HTML/Java/SQL/HTML5” or “Iphone/Samsung Galaxy/Nexus/HTC” for 236 countries/territories, from 2004 to 2015. Our goal is to capture important patterns and rules, to find the answer for the following issues: (a) Are there any periodical/seasonal activities? (b) How can we automatically and incrementally detect the sign of competition between two different keywords from the data streams? (c) Can we achieve a real-time snapshot of the stream and forecast long-range future dynamics in both global and local level? In this paper, we present RFCAST, a unifying adaptive non-linear method for forecasting future patterns of co-evolving data streams. Extensive experiments on real datasets show that RFCAST does indeed perform long-range forecasts and it surpasses other state-of-the-art forecasting tools in terms of accuracy and execution speed. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.28(2020) (online) ------------------------------ |
|||||||||||
論文抄録(英) | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | Given a large, online stream of multiple co-evolving online activities, such as Google search queries, which consist of d keywords/activities for l locations of duration n, how can we analyze temporal patterns and relationships among all these activities? How do we go about capturing non-linear evolutions and forecasting long-term future patterns? For example, assume that we have the online search volume for multiple keywords, e.g., “HTML/Java/SQL/HTML5” or “Iphone/Samsung Galaxy/Nexus/HTC” for 236 countries/territories, from 2004 to 2015. Our goal is to capture important patterns and rules, to find the answer for the following issues: (a) Are there any periodical/seasonal activities? (b) How can we automatically and incrementally detect the sign of competition between two different keywords from the data streams? (c) Can we achieve a real-time snapshot of the stream and forecast long-range future dynamics in both global and local level? In this paper, we present RFCAST, a unifying adaptive non-linear method for forecasting future patterns of co-evolving data streams. Extensive experiments on real datasets show that RFCAST does indeed perform long-range forecasts and it surpasses other state-of-the-art forecasting tools in terms of accuracy and execution speed. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.28(2020) (online) ------------------------------ |
|||||||||||
書誌レコードID | ||||||||||||
収録物識別子タイプ | NCID | |||||||||||
収録物識別子 | AA11464847 | |||||||||||
書誌情報 |
情報処理学会論文誌データベース(TOD) 巻 13, 号 2, 発行日 2020-04-16 |
|||||||||||
ISSN | ||||||||||||
収録物識別子タイプ | ISSN | |||||||||||
収録物識別子 | 1882-7799 | |||||||||||
出版者 | ||||||||||||
言語 | ja | |||||||||||
出版者 | 情報処理学会 |